神经形态工程学
记忆电阻器
人工神经网络
玻尔兹曼机
计算机科学
冯·诺依曼建筑
人工智能
深信不疑网络
深度学习
电子工程
材料科学
工程类
操作系统
作者
Wei Wang,Loai Danial,Yang Li,Eric Herbelin,Evgeny Pikhay,Yakov Roizin,Barak Hoffer,Zhongrui Wang,Shahar Kvatinsky
标识
DOI:10.1038/s41928-022-00878-9
摘要
Memristor-based neuromorphic computing could overcome the limitations of traditional von Neumann computing architectures—in which data are shuffled between separate memory and processing units—and improve the performance of deep neural networks. However, this will require accurate synaptic-like device performance, and memristors typically suffer from poor yield and a limited number of reliable conductance states. Here we report floating-gate memristive synaptic devices that are fabricated in a commercial complementary metal–oxide–semiconductor process. These silicon synapses offer analogue tunability, high endurance, long retention time, predictable cycling degradation, moderate device-to-device variation and high yield. They also provide two orders of magnitude higher energy efficiency for multiply–accumulate operations than graphics processing units. We use two 12 × 8 arrays of memristive devices for the in situ training of a 19 × 8 memristive restricted Boltzmann machine for pattern recognition via a gradient descent algorithm based on contrastive divergence. We then create a memristive deep belief neural network consisting of three memristive restricted Boltzmann machines. We test this system using the modified National Institute of Standards and Technology dataset, demonstrating a recognition accuracy of up to 97.05%. Floating-gate memristive synaptic devices that are fabricated using commercial complementary metal–oxide–semiconductor processes can be used to create energy-efficient restricted Boltzmann machines and deep belief neural networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI