Stereo RGB and Deeper LIDAR-Based Network for 3D Object Detection in Autonomous Driving

点云 人工智能 计算机科学 计算机视觉 目标检测 RGB颜色模型 激光雷达 分割 水准点(测量) 特征(语言学) 模式识别(心理学) 遥感 地理 大地测量学 语言学 哲学
作者
Qingdong He,Zhengning Wang,Hao Zeng,Yi Zeng,Shuaicheng Liu,Shuaicheng Liu,Bing Zeng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 152-162 被引量:7
标识
DOI:10.1109/tits.2022.3215766
摘要

3D object detection has become an emerging task in autonomous driving scenarios. Most of previous works process 3D point clouds using either projection-based or voxel-based models. However, both approaches contain some drawbacks. The voxel-based methods lack semantic information, while the projection-based methods suffer from numerous spatial information loss when projected to different views. In this paper, we propose the Stereo RGB and Deeper LIDAR (SRDL) framework which can utilize semantic and spatial information simultaneously such that the performance of network for 3D object detection can be improved naturally. Specifically, the network generates candidate boxes from stereo pairs and combines different region-wise features using a deep fusion scheme. The stereo strategy offers more information for prediction compared with prior works. Then, several local and global feature extractors are stacked in the segmentation module to capture richer deep semantic geometric features from point clouds. After aligning the interior points with fused features, the proposed network refines the prediction in a more accurate manner and encodes the whole box in a novel compact method. The decent experimental results on the challenging KITTI detection benchmark demonstrate the effectiveness of utilizing both stereo images and point clouds for 3D object detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助Liuxinyan采纳,获得10
刚刚
sztao完成签到,获得积分10
1秒前
平常的迎夏完成签到,获得积分10
1秒前
1秒前
1秒前
英俊的铭应助摸水的鱼采纳,获得10
2秒前
充电宝应助欣喜的秋蝶采纳,获得10
2秒前
深情安青应助时光采纳,获得10
2秒前
luswien发布了新的文献求助10
2秒前
sztao发布了新的文献求助10
3秒前
ysy完成签到,获得积分10
3秒前
大模型应助陈帅采纳,获得10
3秒前
5秒前
yjjin应助MI采纳,获得10
5秒前
T_KYG发布了新的文献求助10
6秒前
123456qqqq发布了新的文献求助10
6秒前
自然蘑菇完成签到,获得积分20
6秒前
7秒前
Lillian完成签到,获得积分10
7秒前
257发布了新的文献求助10
7秒前
Viki发布了新的文献求助10
7秒前
7秒前
8秒前
麦候完成签到,获得积分10
8秒前
雨眠发布了新的文献求助10
10秒前
10秒前
10秒前
Kraghc发布了新的文献求助10
11秒前
11秒前
Criminology34应助干净寻冬采纳,获得10
12秒前
科研小狗发布了新的文献求助10
13秒前
smartegg完成签到,获得积分10
13秒前
汉堡包应助爱橙色的阿七采纳,获得10
13秒前
复杂千亦发布了新的文献求助10
14秒前
15秒前
潘尼完成签到,获得积分10
15秒前
T_KYG完成签到,获得积分10
15秒前
15秒前
16秒前
爱撒娇的妙竹完成签到,获得积分10
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588375
求助须知:如何正确求助?哪些是违规求助? 4671508
关于积分的说明 14787418
捐赠科研通 4625221
什么是DOI,文献DOI怎么找? 2531826
邀请新用户注册赠送积分活动 1500389
关于科研通互助平台的介绍 1468314