Predictive in silico models for aquatic toxicity of cosmetic and personal care additive mixtures

数量结构-活动关系 水生毒理学 分子描述符 偏最小二乘回归 毒性 生物系统 线性回归 尼泊金甲酯 大型水蚤 化学 计算机科学 机器学习 防腐剂 生物 食品科学 有机化学
作者
Yu-Ting Yang,Hong-Gang Ni
出处
期刊:Water Research [Elsevier BV]
卷期号:236: 119981-119981
标识
DOI:10.1016/j.watres.2023.119981
摘要

As emerging environmental contaminants, cosmetic and personal care additives (CPCAs) may have less oversight than other consumer products. Their continuous release and pseudopersistence could cause long-term harm to the aquatic environment. Since CPCAs generally exist in the form of mixtures in the environment, prediction and analysis of their mixture toxicity are crucial for ecological risk assessment. In this study, the acute toxicity of five typical CPCA mixtures to Daphnia magna was tested. The combined toxicity of binary mixtures was examined with the traditional concentration addition (CA) and independent action (IA) model. Overall, the synergistic effect of the five CPCAs may be caused mainly by methylparaben. In addition, reliable approaches for quantitative structure-activity relationship (QSAR) model development were explored. Specifically, 18 QSAR models were developed by three dataset partitioning techniques (Kennard-Stone's algorithm division, Euclidean distance based division, and sorted activity based division), two descriptor filtering methods (genetic algorithm and stepwise multiple linear regression) and three regression methods (multiple linear regression, partial least squares and support vector machine). Sixteen equations were applied for the calculation of the mixture descriptors to screen the functional expression of the mixture descriptors with the largest contribution to the mixture toxicity. A new comprehensive parameter that integrates internal and external validation was proposed for QSAR models evaluation. The mixture toxicity is mainly related the 3D distribution of atomic masses and the spatial distribution of the molecule electronic properties. Rigorously validated and externally predictive QSAR models were developed for predicting the toxicity of binary CPCAs mixtures with any ratio, in the applicability domain. The best possible work frame for construction and validation of QSAR models to provide reliable predictions on the mixture toxicity was proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助jx314采纳,获得10
刚刚
1秒前
MaRin发布了新的文献求助10
2秒前
3秒前
777完成签到 ,获得积分10
4秒前
4秒前
7U完成签到,获得积分10
5秒前
ycf完成签到,获得积分10
5秒前
zihanwang应助天真的迎天采纳,获得10
7秒前
8秒前
醉熏的鑫发布了新的文献求助10
9秒前
无花果应助ll采纳,获得10
9秒前
英俊不凡发布了新的文献求助10
10秒前
10秒前
AlvinCZY发布了新的文献求助20
12秒前
ycf发布了新的文献求助20
14秒前
香蕉觅云应助Ultraman采纳,获得10
18秒前
生动路人应助要减肥天问采纳,获得10
20秒前
zhangyu应助anny.white采纳,获得10
21秒前
22秒前
Ava应助lixm采纳,获得10
23秒前
旋转鸡爪子应助吴向宽采纳,获得10
23秒前
旋转鸡爪子应助吴向宽采纳,获得10
23秒前
23秒前
三年半完成签到,获得积分10
24秒前
Ava应助sycsyc采纳,获得10
26秒前
打打应助无奈青枫采纳,获得10
26秒前
yan发布了新的文献求助10
26秒前
26秒前
英雷完成签到,获得积分10
27秒前
慕慕倾完成签到,获得积分10
30秒前
31秒前
念心发布了新的文献求助10
32秒前
科研通AI2S应助如约而至采纳,获得10
34秒前
搜集达人应助xiaojian_291采纳,获得10
34秒前
yan完成签到,获得积分10
34秒前
36秒前
37秒前
北沐完成签到,获得积分10
37秒前
希望天下0贩的0应助yan采纳,获得10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070