ImpressionGPT: An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT

计算机科学 自动汇总 桥接(联网) 背景(考古学) 一般化 自然语言处理 人工智能 数据科学 机器学习 计算机安全 古生物学 数学分析 数学 生物
作者
Ma, Chong,Wu, Zihao,Wang, Jiaqi,Xu, Shaochen,Wei, Yaonai,Liu, Zhengliang,Guo, Lei,Cai, Xiaoyan,Zhang, Shu,Zhang, Tuo,Zhu, Dajiang,Shen, Dinggang,Liu, Tianming,Li, Xiang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.08448
摘要

The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians, and it is typically written by radiologists based on the 'Findings' section. However, writing numerous impressions can be laborious and error-prone for radiologists. Although recent studies have achieved promising results in automatic impression generation using large-scale medical text data for pre-training and fine-tuning pre-trained language models, such models often require substantial amounts of medical text data and have poor generalization performance. While large language models (LLMs) like ChatGPT have shown strong generalization capabilities and performance, their performance in specific domains, such as radiology, remains under-investigated and potentially limited. To address this limitation, we propose ImpressionGPT, which leverages the in-context learning capability of LLMs by constructing dynamic contexts using domain-specific, individualized data. This dynamic prompt approach enables the model to learn contextual knowledge from semantically similar examples from existing data. Additionally, we design an iterative optimization algorithm that performs automatic evaluation on the generated impression results and composes the corresponding instruction prompts to further optimize the model. The proposed ImpressionGPT model achieves state-of-the-art performance on both MIMIC-CXR and OpenI datasets without requiring additional training data or fine-tuning the LLMs. This work presents a paradigm for localizing LLMs that can be applied in a wide range of similar application scenarios, bridging the gap between general-purpose LLMs and the specific language processing needs of various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
午见千山应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
spwan应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
迅速荠完成签到,获得积分10
2秒前
3秒前
缓慢斩完成签到,获得积分10
3秒前
4秒前
4秒前
小白科研发布了新的文献求助10
6秒前
gc发布了新的文献求助10
8秒前
9秒前
jeesy完成签到,获得积分10
9秒前
洁净方盒发布了新的文献求助10
10秒前
10秒前
英姑应助纯真的飞烟采纳,获得10
10秒前
10秒前
充电宝应助南京小鱼儿采纳,获得10
13秒前
肖恩发布了新的文献求助10
13秒前
13秒前
未来完成签到,获得积分10
13秒前
mm完成签到,获得积分10
14秒前
14秒前
烟花应助Maolin采纳,获得10
15秒前
高桥凉介发布了新的文献求助10
15秒前
16秒前
一一应助Louisa采纳,获得10
17秒前
Pt-SACs发布了新的文献求助10
17秒前
afterly发布了新的文献求助30
17秒前
19秒前
难难难完成签到,获得积分10
19秒前
一一应助Vce April采纳,获得20
20秒前
动听的蛟凤完成签到,获得积分10
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228354
求助须知:如何正确求助?哪些是违规求助? 2876112
关于积分的说明 8193906
捐赠科研通 2543258
什么是DOI,文献DOI怎么找? 1373602
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621333