已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ImpressionGPT: An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT

计算机科学 自动汇总 桥接(联网) 背景(考古学) 一般化 自然语言处理 人工智能 数据科学 机器学习 计算机安全 数学 生物 数学分析 古生物学
作者
Ma, Chong,Wu, Zihao,Wang, Jiaqi,Xu, Shaochen,Wei, Yaonai,Liu, Zhengliang,Guo, Lei,Cai, Xiaoyan,Zhang, Shu,Zhang, Tuo,Zhu, Dajiang,Shen, Dinggang,Liu, Tianming,Li, Xiang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.08448
摘要

The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians, and it is typically written by radiologists based on the 'Findings' section. However, writing numerous impressions can be laborious and error-prone for radiologists. Although recent studies have achieved promising results in automatic impression generation using large-scale medical text data for pre-training and fine-tuning pre-trained language models, such models often require substantial amounts of medical text data and have poor generalization performance. While large language models (LLMs) like ChatGPT have shown strong generalization capabilities and performance, their performance in specific domains, such as radiology, remains under-investigated and potentially limited. To address this limitation, we propose ImpressionGPT, which leverages the in-context learning capability of LLMs by constructing dynamic contexts using domain-specific, individualized data. This dynamic prompt approach enables the model to learn contextual knowledge from semantically similar examples from existing data. Additionally, we design an iterative optimization algorithm that performs automatic evaluation on the generated impression results and composes the corresponding instruction prompts to further optimize the model. The proposed ImpressionGPT model achieves state-of-the-art performance on both MIMIC-CXR and OpenI datasets without requiring additional training data or fine-tuning the LLMs. This work presents a paradigm for localizing LLMs that can be applied in a wide range of similar application scenarios, bridging the gap between general-purpose LLMs and the specific language processing needs of various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
dengdeng发布了新的文献求助10
2秒前
吴荣方发布了新的文献求助10
4秒前
壮观大炮完成签到,获得积分10
4秒前
小蘑菇应助热情的未来采纳,获得10
5秒前
Jasper应助轻松的小曾采纳,获得10
6秒前
酷波er应助内向的绿海采纳,获得10
9秒前
充电宝应助内向的绿海采纳,获得10
9秒前
鈮宝完成签到 ,获得积分10
9秒前
WerWu完成签到,获得积分0
12秒前
12秒前
13秒前
医疗废物专用车乘客完成签到,获得积分10
15秒前
小曾发布了新的文献求助10
16秒前
wwt发布了新的文献求助10
18秒前
FashionBoy应助内向的绿海采纳,获得10
21秒前
21秒前
三泥完成签到,获得积分10
21秒前
Fn完成签到 ,获得积分10
23秒前
Momomo应助科研通管家采纳,获得10
24秒前
脑洞疼应助科研通管家采纳,获得30
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
Momomo应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
Momomo应助科研通管家采纳,获得10
25秒前
Momomo应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
Orange应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得30
25秒前
25秒前
25秒前
26秒前
朱砂完成签到,获得积分10
27秒前
共享精神应助nickel采纳,获得10
27秒前
重要的水壶完成签到,获得积分10
28秒前
枝头树上的布谷鸟完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493621
求助须知:如何正确求助?哪些是违规求助? 4591657
关于积分的说明 14434342
捐赠科研通 4524055
什么是DOI,文献DOI怎么找? 2478579
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436426