已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ImpressionGPT: An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT

计算机科学 自动汇总 桥接(联网) 背景(考古学) 一般化 自然语言处理 人工智能 数据科学 机器学习 计算机安全 古生物学 数学分析 数学 生物
作者
Ma, Chong,Wu, Zihao,Wang, Jiaqi,Xu, Shaochen,Wei, Yaonai,Liu, Zhengliang,Guo, Lei,Cai, Xiaoyan,Zhang, Shu,Zhang, Tuo,Zhu, Dajiang,Shen, Dinggang,Liu, Tianming,Li, Xiang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.08448
摘要

The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians, and it is typically written by radiologists based on the 'Findings' section. However, writing numerous impressions can be laborious and error-prone for radiologists. Although recent studies have achieved promising results in automatic impression generation using large-scale medical text data for pre-training and fine-tuning pre-trained language models, such models often require substantial amounts of medical text data and have poor generalization performance. While large language models (LLMs) like ChatGPT have shown strong generalization capabilities and performance, their performance in specific domains, such as radiology, remains under-investigated and potentially limited. To address this limitation, we propose ImpressionGPT, which leverages the in-context learning capability of LLMs by constructing dynamic contexts using domain-specific, individualized data. This dynamic prompt approach enables the model to learn contextual knowledge from semantically similar examples from existing data. Additionally, we design an iterative optimization algorithm that performs automatic evaluation on the generated impression results and composes the corresponding instruction prompts to further optimize the model. The proposed ImpressionGPT model achieves state-of-the-art performance on both MIMIC-CXR and OpenI datasets without requiring additional training data or fine-tuning the LLMs. This work presents a paradigm for localizing LLMs that can be applied in a wide range of similar application scenarios, bridging the gap between general-purpose LLMs and the specific language processing needs of various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
大方的星星完成签到,获得积分10
3秒前
4秒前
碧蓝的之云完成签到 ,获得积分10
5秒前
我是哈哈超人完成签到,获得积分10
5秒前
大大大漂亮完成签到 ,获得积分10
5秒前
7秒前
华仔应助猪猪hero采纳,获得10
7秒前
10秒前
squrreil发布了新的文献求助10
12秒前
FN_09完成签到,获得积分10
14秒前
15秒前
77发布了新的文献求助10
15秒前
Bob发布了新的文献求助10
15秒前
思源应助武愿采纳,获得10
17秒前
20秒前
猪猪hero发布了新的文献求助10
21秒前
22秒前
戴和家完成签到,获得积分10
23秒前
万能图书馆应助squrreil采纳,获得10
25秒前
25秒前
在水一方应助小小鹅采纳,获得10
26秒前
sjr发布了新的文献求助10
27秒前
27秒前
28秒前
科研通AI2S应助77采纳,获得10
29秒前
老天师一巴掌完成签到 ,获得积分10
30秒前
风趣雪卉发布了新的文献求助10
34秒前
34秒前
36秒前
田様应助你看那个蛋采纳,获得10
36秒前
40秒前
wk完成签到,获得积分10
42秒前
自信惋清完成签到,获得积分10
44秒前
戴和家发布了新的文献求助10
46秒前
49秒前
50秒前
50秒前
GPTea应助科研通管家采纳,获得20
50秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522