ImpressionGPT: An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT

计算机科学 自动汇总 桥接(联网) 背景(考古学) 一般化 自然语言处理 人工智能 数据科学 机器学习 计算机安全 数学 生物 数学分析 古生物学
作者
Ma, Chong,Wu, Zihao,Wang, Jiaqi,Xu, Shaochen,Wei, Yaonai,Liu, Zhengliang,Guo, Lei,Cai, Xiaoyan,Zhang, Shu,Zhang, Tuo,Zhu, Dajiang,Shen, Dinggang,Liu, Tianming,Li, Xiang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.08448
摘要

The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians, and it is typically written by radiologists based on the 'Findings' section. However, writing numerous impressions can be laborious and error-prone for radiologists. Although recent studies have achieved promising results in automatic impression generation using large-scale medical text data for pre-training and fine-tuning pre-trained language models, such models often require substantial amounts of medical text data and have poor generalization performance. While large language models (LLMs) like ChatGPT have shown strong generalization capabilities and performance, their performance in specific domains, such as radiology, remains under-investigated and potentially limited. To address this limitation, we propose ImpressionGPT, which leverages the in-context learning capability of LLMs by constructing dynamic contexts using domain-specific, individualized data. This dynamic prompt approach enables the model to learn contextual knowledge from semantically similar examples from existing data. Additionally, we design an iterative optimization algorithm that performs automatic evaluation on the generated impression results and composes the corresponding instruction prompts to further optimize the model. The proposed ImpressionGPT model achieves state-of-the-art performance on both MIMIC-CXR and OpenI datasets without requiring additional training data or fine-tuning the LLMs. This work presents a paradigm for localizing LLMs that can be applied in a wide range of similar application scenarios, bridging the gap between general-purpose LLMs and the specific language processing needs of various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ahua完成签到,获得积分10
1秒前
惠惠发布了新的文献求助10
2秒前
2秒前
yan发布了新的文献求助10
2秒前
日落再见完成签到,获得积分10
3秒前
俊逸蜗牛发布了新的文献求助10
3秒前
ZHUZHU发布了新的文献求助10
3秒前
天天快乐应助开心的绮玉采纳,获得10
4秒前
上官老黑发布了新的文献求助10
4秒前
4秒前
yaoli发布了新的文献求助30
4秒前
戴玉梅完成签到,获得积分10
6秒前
ding应助谢雨琪采纳,获得10
8秒前
Lesley完成签到 ,获得积分10
9秒前
9秒前
传奇3应助王图图采纳,获得10
10秒前
xiaoying在奋斗完成签到,获得积分10
10秒前
科研通AI6应助远志采纳,获得10
11秒前
风云路人完成签到,获得积分20
12秒前
共享精神应助每天吃土采纳,获得10
12秒前
烟花应助tututu采纳,获得10
12秒前
Ge完成签到,获得积分10
12秒前
12秒前
俊逸蜗牛完成签到,获得积分10
12秒前
思源应助小聖采纳,获得10
13秒前
追寻冬日给Snape的求助进行了留言
15秒前
15秒前
16秒前
打打应助XT采纳,获得10
18秒前
怪怪发布了新的文献求助10
18秒前
18秒前
花恋蝶7完成签到,获得积分10
19秒前
精明孤云发布了新的文献求助10
19秒前
流年发布了新的文献求助10
20秒前
yan完成签到,获得积分10
21秒前
21秒前
酷波er应助100采纳,获得10
22秒前
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394197
求助须知:如何正确求助?哪些是违规求助? 4515443
关于积分的说明 14054147
捐赠科研通 4426698
什么是DOI,文献DOI怎么找? 2431463
邀请新用户注册赠送积分活动 1423587
关于科研通互助平台的介绍 1402559