亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ImpressionGPT: An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT

计算机科学 自动汇总 桥接(联网) 背景(考古学) 一般化 自然语言处理 人工智能 数据科学 机器学习 计算机安全 数学 生物 数学分析 古生物学
作者
Ma, Chong,Wu, Zihao,Wang, Jiaqi,Xu, Shaochen,Wei, Yaonai,Liu, Zhengliang,Guo, Lei,Cai, Xiaoyan,Zhang, Shu,Zhang, Tuo,Zhu, Dajiang,Shen, Dinggang,Liu, Tianming,Li, Xiang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.08448
摘要

The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians, and it is typically written by radiologists based on the 'Findings' section. However, writing numerous impressions can be laborious and error-prone for radiologists. Although recent studies have achieved promising results in automatic impression generation using large-scale medical text data for pre-training and fine-tuning pre-trained language models, such models often require substantial amounts of medical text data and have poor generalization performance. While large language models (LLMs) like ChatGPT have shown strong generalization capabilities and performance, their performance in specific domains, such as radiology, remains under-investigated and potentially limited. To address this limitation, we propose ImpressionGPT, which leverages the in-context learning capability of LLMs by constructing dynamic contexts using domain-specific, individualized data. This dynamic prompt approach enables the model to learn contextual knowledge from semantically similar examples from existing data. Additionally, we design an iterative optimization algorithm that performs automatic evaluation on the generated impression results and composes the corresponding instruction prompts to further optimize the model. The proposed ImpressionGPT model achieves state-of-the-art performance on both MIMIC-CXR and OpenI datasets without requiring additional training data or fine-tuning the LLMs. This work presents a paradigm for localizing LLMs that can be applied in a wide range of similar application scenarios, bridging the gap between general-purpose LLMs and the specific language processing needs of various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
Shuo应助科研通管家采纳,获得20
15秒前
慕青应助科研通管家采纳,获得10
15秒前
lzxbarry应助科研通管家采纳,获得50
15秒前
lzxbarry应助科研通管家采纳,获得50
15秒前
29秒前
Hodlumm完成签到,获得积分10
45秒前
LArry完成签到,获得积分10
47秒前
Orange应助TXZ06采纳,获得10
53秒前
英姑应助zwang688采纳,获得10
57秒前
星辰大海应助TXZ06采纳,获得10
1分钟前
思源应助mervin采纳,获得10
1分钟前
1分钟前
1分钟前
TXZ06发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
zwang688发布了新的文献求助10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
2分钟前
mervin发布了新的文献求助10
2分钟前
3分钟前
3分钟前
DannyNickolov发布了新的文献求助10
3分钟前
3分钟前
曲夜白完成签到 ,获得积分10
3分钟前
Owen应助荆棘鸟采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
DannyNickolov完成签到,获得积分10
3分钟前
mervin完成签到,获得积分10
3分钟前
4分钟前
Hodlumm发布了新的文献求助10
4分钟前
4分钟前
隐形曼青应助谷千千采纳,获得10
4分钟前
4分钟前
5分钟前
谷千千发布了新的文献求助10
5分钟前
谷千千完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596033
求助须知:如何正确求助?哪些是违规求助? 4008156
关于积分的说明 12408892
捐赠科研通 3687052
什么是DOI,文献DOI怎么找? 2032177
邀请新用户注册赠送积分活动 1065413
科研通“疑难数据库(出版商)”最低求助积分说明 950750