费斯特共振能量转移
纳米探针
生物传感器
材料科学
检出限
纳米技术
纳米颗粒
接受者
荧光
纳米材料
化学
光学
物理
色谱法
凝聚态物理
作者
Deep Sekhar Biswas,Paraskevi Gaki,Elisabete Cruz Da Silva,Antoine Combes,Andreas Reisch,Pascal Didier,Andrey S. Klymchenko
标识
DOI:10.1002/adma.202301402
摘要
Förster resonance energy transfer (FRET) is essential in optical materials for light-harvesting, photovoltaics, and biosensing, but its operating range is fundamentally limited by the Förster radius of ≈5 nm. In this work, FRET between fluorescent organic nanoparticles (NPs) is studied in order to break this limit. The donor and acceptor NPs are built from charged hydrophobic polymers loaded with cationic dyes and bulky hydrophobic counterions. Their surface is functionalized with DNA in order to control surface-to-surface distance. It is found that the FRET efficiency does not follow the canonic Förster law, reaching 0.70 and 0.45 values for NP-NP distances of 15 and 20 nm, respectively. This corresponds to the FRET efficiency decay as power four of the surface-to-surface NP-NP distance. Based on this long-distance FRET, a DNA nanoprobe is developed, where a target DNA fragment, encoding the cancer marker survivin, bringing together donor and acceptor NPs at ≈15 nm distance. In this nanoprobe, a single-molecular recognition results in unprecedented color switch for >5000 dyes, yielding a simple and fast assay with 18 attomoles limit of detection. Breaking the Förster distance limit for ultrabright NPs opens the route to advanced optical nanomaterials for amplified FRET-based biosensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI