Numerical simulation of H2-intensive shaft furnace direct reduction process

高炉煤气 高炉 工作(物理) 天然气 炼钢 还原(数学) 流量(数学) 体积流量 传热 颗粒 工艺工程 材料科学 环境科学 机械工程 机械 冶金 废物管理 工程类 复合材料 几何学 数学 物理
作者
Zhaoyang Li,Zheng Qi,Lechen Zhang,Meng Guo,Liang Dong,Qiang Dong
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:409: 137059-137059 被引量:19
标识
DOI:10.1016/j.jclepro.2023.137059
摘要

The shaft furnace based H2-intensive direct reduction process has the potential to realize "carbon neutrality" and can significantly reduce the CO2 emission, compared to the traditional blast furnace process. To date, no commercial-scale shaft furnace using H2 has been established, due to the lack of corresponding understanding. In this work, a continuum-based shaft furnace model is developed, which considers the multi-phase flows of gas and solid, heat and mass transfer as well as key chemical reactions in the direct reduction process. It is validated by comparing the simulated performance indicators with those measured in the plant. Using the model, the effects of the pressure at the cooling gas outlet have been studied. The results show that the pressure at the cooling gas outlet has a significant impact on in-furnace gas flow, which should be carefully controlled to separate the reducing and cooling gas effectively. As for the product, the carburization and metallization of direct reduced iron can also be optimized through proper control of the pressure at the cooling gas outlet. On this basis, under the same injection rate, the production using H2 is compared with the normal one using reformed natural gas, under their respectively optimized conditions. It is shown that the production with H2 delivers direct reduced iron with less carburization and metallization. Charging large-sized pellets into the furnace centre can solve the problems to a degree by improving the gas flow distribution in the reducing zone. This work should provide a deeper insight into the cleaner production of the shaft furnace based direct reduction process, particularly that operated with H2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_8RlQ2n发布了新的文献求助10
1秒前
1秒前
单薄的夜南应助JWonder采纳,获得10
2秒前
2秒前
2秒前
吃吃发布了新的文献求助10
2秒前
3秒前
阳光he完成签到,获得积分10
3秒前
Hello应助研友_Zrlk7L采纳,获得30
5秒前
arcremnant完成签到,获得积分10
6秒前
innate完成签到,获得积分10
9秒前
陈淑玲完成签到,获得积分10
9秒前
意去也发布了新的文献求助10
10秒前
xiaozang完成签到,获得积分10
10秒前
散装洋芋完成签到 ,获得积分10
12秒前
搜集达人应助xd采纳,获得10
12秒前
核桃完成签到,获得积分0
13秒前
科研通AI2S应助Nancy采纳,获得10
14秒前
14秒前
高兴的冰棍完成签到,获得积分10
15秒前
dd完成签到,获得积分10
15秒前
Selenaxue完成签到,获得积分10
16秒前
Hello应助悦耳半梦采纳,获得30
16秒前
脆啵啵马克宝完成签到,获得积分10
17秒前
烟里戏完成签到 ,获得积分10
19秒前
斯文败类应助dd采纳,获得10
19秒前
20秒前
小布完成签到 ,获得积分0
20秒前
21秒前
21秒前
22秒前
鱼鱼发布了新的文献求助10
22秒前
airslake发布了新的文献求助10
23秒前
11完成签到,获得积分10
23秒前
SciGPT应助活泼的冬寒采纳,获得10
25秒前
地表飞猪应助mooncake采纳,获得40
25秒前
xd发布了新的文献求助10
25秒前
小马甲应助云中采纳,获得10
26秒前
Nancy发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969917
求助须知:如何正确求助?哪些是违规求助? 3514626
关于积分的说明 11175060
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795165
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891