A triboelectric gait sensor system for human activity recognition and user identification

步态 计算机科学 活动识别 摩擦电效应 纳米发生器 无线传感器网络 实时计算 人工智能 计算机视觉 模拟 工程类 电压 电气工程 材料科学 复合材料 生物 生理学 计算机网络
作者
Jiarong Li,Zhenrong Xie,Zihan Wang,Zenan Lin,Chengyue Lu,Zihao Zhao,Yuchao Jin,Jihong Yin,Shilong Mu,Chaobo Zhang,Weihua Gui,Xiaojun Liang,Jiyu Wang,Zihan Wang
出处
期刊:Nano Energy [Elsevier]
卷期号:112: 108473-108473 被引量:9
标识
DOI:10.1016/j.nanoen.2023.108473
摘要

Floor-based sensing systems to monitor human activities and identify users are essential for smart homes and intelligent buildings. A low-cost, easy-to-fabricate, and flexible gait sensor system based on triboelectric nanogenerator (TENG) is presented in this paper, which can transform gait movements, even in the low-frequency form, into electrical impulses without an external power source. To realize this, a TENG-based gait sensor unit with an optimized structure design is proposed to enhance the sensing sensitivity. A sensing insole module is formed by arranging the sensor units according to the foot pressure distribution. The sensor distribution is then explored and improved by comparative studies of gait recognition performance, which increases the recognition efficiency and the possible application in edge computing scenarios. Furthermore, a deep learning network is developed based on long short-term memory (LSTM) and residual units to extract deep features from multichannel time-series gait data to boost recognition performance. Experimental results demonstrate that the proposed gait sensor system can be utilized for human activity recognition and user identification with accuracies of 97.9 % and 99.4 %, respectively. Finally, a gait-sensing-based fitness exercise monitoring system is constructed that can estimate calorie expenditure and distinguish between standard and non-standard fitness activities with an accuracy of 97.2 %. This work can be extended to various application scenarios such as security surveillance, health monitoring, and intelligent control, which provides a new ubiquitous self-powered sensing solution for the Internet of Things (IoT).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sherrycofe应助鹤丸子采纳,获得10
1秒前
阿宝完成签到 ,获得积分10
2秒前
薰硝壤应助Ryuichi采纳,获得10
2秒前
清零完成签到,获得积分10
2秒前
3秒前
NexusExplorer应助迷路的巨人采纳,获得10
3秒前
烟花应助湛刘佳采纳,获得10
3秒前
lily发布了新的文献求助10
3秒前
张小马完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
救救孩子救救孩子完成签到,获得积分10
6秒前
清风明月发布了新的文献求助10
7秒前
Jasper应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得30
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
qing_he应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
薰硝壤应助科研通管家采纳,获得20
9秒前
bkagyin应助科研通管家采纳,获得10
10秒前
一石二鸟应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
xiaoming应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
qing_he应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
12秒前
某某完成签到,获得积分10
13秒前
phyllis完成签到,获得积分10
13秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135943
求助须知:如何正确求助?哪些是违规求助? 2786734
关于积分的说明 7779353
捐赠科研通 2442999
什么是DOI,文献DOI怎么找? 1298768
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870