A triboelectric gait sensor system for human activity recognition and user identification

步态 计算机科学 活动识别 摩擦电效应 纳米发生器 无线传感器网络 实时计算 人工智能 计算机视觉 模拟 工程类 电压 电气工程 材料科学 复合材料 生物 生理学 计算机网络
作者
Jiarong Li,Zhenrong Xie,Zihan Wang,Zenan Lin,Chengyue Lu,Zihao Zhao,Yuchao Jin,Jihong Yin,Shilong Mu,Chaobo Zhang,Weihua Gui,Xiaojun Liang,Jiyu Wang,Zihan Wang
出处
期刊:Nano Energy [Elsevier BV]
卷期号:112: 108473-108473 被引量:9
标识
DOI:10.1016/j.nanoen.2023.108473
摘要

Floor-based sensing systems to monitor human activities and identify users are essential for smart homes and intelligent buildings. A low-cost, easy-to-fabricate, and flexible gait sensor system based on triboelectric nanogenerator (TENG) is presented in this paper, which can transform gait movements, even in the low-frequency form, into electrical impulses without an external power source. To realize this, a TENG-based gait sensor unit with an optimized structure design is proposed to enhance the sensing sensitivity. A sensing insole module is formed by arranging the sensor units according to the foot pressure distribution. The sensor distribution is then explored and improved by comparative studies of gait recognition performance, which increases the recognition efficiency and the possible application in edge computing scenarios. Furthermore, a deep learning network is developed based on long short-term memory (LSTM) and residual units to extract deep features from multichannel time-series gait data to boost recognition performance. Experimental results demonstrate that the proposed gait sensor system can be utilized for human activity recognition and user identification with accuracies of 97.9 % and 99.4 %, respectively. Finally, a gait-sensing-based fitness exercise monitoring system is constructed that can estimate calorie expenditure and distinguish between standard and non-standard fitness activities with an accuracy of 97.2 %. This work can be extended to various application scenarios such as security surveillance, health monitoring, and intelligent control, which provides a new ubiquitous self-powered sensing solution for the Internet of Things (IoT).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地表飞猪应助leo采纳,获得10
刚刚
早晚会疯发布了新的文献求助10
2秒前
PANYIAO完成签到,获得积分10
2秒前
angelsknight发布了新的文献求助30
2秒前
cuckoo完成签到,获得积分10
3秒前
Zhang完成签到,获得积分10
3秒前
vvvv发布了新的文献求助30
3秒前
暄anbujun发布了新的文献求助10
4秒前
SYLH应助阿宋采纳,获得30
7秒前
反方向的枫完成签到,获得积分10
9秒前
一梦三四年完成签到 ,获得积分10
10秒前
暄anbujun完成签到,获得积分10
11秒前
幕白okk完成签到,获得积分10
12秒前
12秒前
13秒前
哌替啶发布了新的文献求助20
13秒前
花花完成签到,获得积分10
16秒前
18秒前
18秒前
Zirong发布了新的文献求助10
19秒前
雅典的宠儿完成签到 ,获得积分10
19秒前
22秒前
banlu发布了新的文献求助10
23秒前
天天快乐应助单纯天晴采纳,获得10
23秒前
向东东发布了新的文献求助10
24秒前
苯偶姻完成签到 ,获得积分10
24秒前
eliseo完成签到 ,获得积分10
24秒前
玖文发布了新的文献求助10
26秒前
佳佳应助向美而死采纳,获得10
28秒前
29秒前
30秒前
31秒前
木柟完成签到,获得积分10
31秒前
Bear完成签到 ,获得积分10
32秒前
玖文完成签到,获得积分10
32秒前
彭于晏应助专注乌冬面采纳,获得10
34秒前
34秒前
云氲完成签到 ,获得积分10
34秒前
tangz完成签到,获得积分20
35秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966388
求助须知:如何正确求助?哪些是违规求助? 3511817
关于积分的说明 11160082
捐赠科研通 3246443
什么是DOI,文献DOI怎么找? 1793422
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388