光电流
异质结
材料科学
薄膜
光电子学
溅射沉积
拉曼光谱
可见光谱
电极
分析化学(期刊)
溅射
光学
纳米技术
化学
物理
物理化学
色谱法
作者
Nikita Malhotra,Narinder Kaur,Abhishek Ghosh,Manan Mehta,Nisha Kodan
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2023-04-17
卷期号:6 (13): 6926-6933
被引量:2
标识
DOI:10.1021/acsaem.3c00359
摘要
Planar ZnO/V2O5 heterojunctions show excellent photocurrent density and are easy to prepare using a simple physical vapor deposition technique. First, ZnO thin-film photo-electrodes were prepared by radio frequency sputtering, and then their thickness was optimized for improved photoelectrochemical (PEC) response, resulting in an optimum photocurrent density value of ∼0.7 mA/cm2 at 0.61 V vs Ag/AgCl for ZnO thin films deposited for 15 min. Thereafter, ZnO/V2O5 heterojunctions were fabricated by depositing V2O5 thin films for different deposition durations of 10, 20, and 30 min onto ZnO thin-film samples which were already optimized to further improve the PEC performance. The structural, optical, and morphological properties of pristine and heterojunction thin-film samples were investigated by X-ray diffraction, Raman spectroscopy, UV–visible spectroscopy, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques. The maximum photocurrent density value of 1.56 mA/cm2 at 0.61 V vs Ag/AgCl was obtained for ZnO/V2O5 heterojunction photoanodes, where the top V2O5 layer was deposited by RF magnetron sputtering process which occurred for 20 min. The ZnO/V2O5 heterojunction photocurrent density was nearly twice as compared with that of the pristine ZnO photo-electrode. This improved PEC response of the ZnO/V2O5 heterojunction was due to enhanced visible-light absorption and the formation of a staggered n–n heterojunction, which facilitated the separation of electron–hole pairs at the photo-anode/electrolyte junction.
科研通智能强力驱动
Strongly Powered by AbleSci AI