Shapefile-based multi-agent geosimulation and visualization of building evacuation scenario

形状文件 计算机科学 行人 紧急疏散 可视化 航程(航空) 运筹学 数据挖掘 运输工程 地理 万维网 工程类 复合材料 材料科学 气象学 元数据
作者
Ephraim Sinyabe Pagou,Vivient Corneille Kamla,Igor Tchappi,Yazan Mualla,Amro Najjar,Stéphane Galland
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:220: 519-526 被引量:4
标识
DOI:10.1016/j.procs.2023.03.066
摘要

Numerous computational tools for the simulation and design of emergency evacuation and egress are now available. Many evacuation models have been studied at different scales, from micro to macro models. To examine the problem in detail, the popular approach solicited is that of agent-based models (ABMs). ABMs take into account the heterogeneity of pedestrian behaviors and the unspecified conditions of the road network. However, the computational cost is enormous when applied to numerous evacuees. Coupled with ABM, the available Shapefile data can be used to develop simulation models to improve the analysis of spatial data and spatial processes. One such application concerns the evacuation of buildings in hazardous situations, where ABM is integrated with geographic information system (GIS) Shapefiles indoor spatial data to model humans during evacuation events and to simulate evacuation scenarios visualized in the Shapefiles. The research presented in this paper develops a multi-agent geosimulation model for building evacuation, integrating a Shapefile dataset of the case study building as input to ABM through the GAMA simulation platform. This model is intended to complement and enhance traditional approaches to building evacuation planning and management, such as earthquake and fire drills. The framework has been elaborated in such a way that it works for a wide range of scenarios, both in terms of hazards, geographical configurations, individual behaviors and crisis management. To demonstrate its adaptability, a real-life case study is presented concerning the evacuation of the Station NightClub from a fire.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
320me666完成签到,获得积分10
刚刚
刚刚
velpro发布了新的文献求助10
1秒前
科研通AI5应助masu采纳,获得10
1秒前
小狸跟你拼啦完成签到,获得积分10
1秒前
寂寞的灵发布了新的文献求助10
1秒前
2秒前
honey完成签到,获得积分10
2秒前
白宝宝北北白应助eee采纳,获得10
2秒前
gcc应助HZW采纳,获得20
3秒前
3秒前
完美世界应助Hu111采纳,获得10
4秒前
khaosyi完成签到 ,获得积分10
5秒前
哇哈哈完成签到,获得积分10
6秒前
6秒前
buno应助啦啦采纳,获得10
7秒前
Mike完成签到,获得积分10
7秒前
7秒前
顾矜应助chen采纳,获得10
8秒前
科研通AI5应助小王采纳,获得10
8秒前
GGBond完成签到,获得积分10
8秒前
孔雀翎发布了新的文献求助10
8秒前
寂寞的灵完成签到,获得积分10
9秒前
后知后觉发布了新的文献求助10
9秒前
百十余完成签到,获得积分10
9秒前
9秒前
9秒前
Zhaorf完成签到,获得积分10
10秒前
沉默紫槐完成签到,获得积分10
10秒前
深情安青应助易达采纳,获得10
10秒前
默默海露发布了新的文献求助10
12秒前
13秒前
flyfish完成签到,获得积分10
13秒前
36456657应助chen采纳,获得10
13秒前
每念至此完成签到,获得积分10
14秒前
大力黑米完成签到 ,获得积分10
15秒前
123发布了新的文献求助30
15秒前
搜集达人应助gaos采纳,获得10
15秒前
hengy发布了新的文献求助10
15秒前
杳鸢应助Xenia采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672