Gaussian Approximation Potentials for Accurate Thermal Properties of Two-Dimensional Materials

原子间势 非谐性 分子动力学 密度泛函理论 声子 高斯分布 统计物理学 工作(物理) 材料科学 物理 量子力学
作者
Tugbey Kocabas,Murat Keçeli,Álvaro Vázquez-Mayagoitia,Cem Sevik
出处
期刊:Nanoscale [The Royal Society of Chemistry]
标识
DOI:10.1039/d3nr00399j
摘要

Two-dimensional materials (2DMs) continue to attract a lot of attention, particularly for their extreme flexibility and superior thermal properties. Molecular dynamics simulations are among the most powerful methods for computing these properties, but their reliability depends on the accuracy of interatomic interactions. While first principles approaches provide the most accurate description of interatomic forces, they are computationally expensive. In contrast, classical force fields are computationally efficient, but have limited accuracy in interatomic force description. Machine learning interatomic potentials, such as Gaussian Approximation Potentials, trained on density functional theory (DFT) calculations offer a compromise by providing both accurate estimation and computational efficiency. In this work, we present a systematic procedure to develop Gaussian approximation potentials for selected 2DMs, graphene, buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We validate our approach through calculations that require various levels of accuracy in interatomic interactions. The calculated phonon dispersion curves and lattice thermal conductivity, obtained through harmonic and anharmonic force constants (including fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in which the generated GAP potentials were used to compute higher-order force constants instead of DFT, demonstrated the first-principles level accuracy of the potentials for interatomic force description. Molecular dynamics simulations based on phonon density of states calculations, which agree closely with DFT-based calculations, also show the success of the generated potentials in high-temperature simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助雯雯采纳,获得10
1秒前
2秒前
丘比特应助杨y123采纳,获得10
4秒前
落日飞鱼发布了新的文献求助10
4秒前
5秒前
pooolw完成签到,获得积分10
5秒前
Randy完成签到,获得积分10
6秒前
所所应助FZY采纳,获得10
6秒前
JamesPei应助黄宇腾采纳,获得10
7秒前
9秒前
Randy发布了新的文献求助10
10秒前
叙温雨发布了新的文献求助10
14秒前
科研通AI2S应助啦啦啦采纳,获得10
14秒前
16秒前
今后应助victorchen采纳,获得30
17秒前
王先森完成签到,获得积分10
18秒前
19秒前
lililili完成签到,获得积分10
19秒前
FashionBoy应助公冶立辉采纳,获得10
20秒前
陈陈发布了新的文献求助10
20秒前
共享精神应助公冶立辉采纳,获得10
20秒前
英俊的铭应助公冶立辉采纳,获得10
20秒前
英姑应助公冶立辉采纳,获得10
20秒前
bkagyin应助公冶立辉采纳,获得10
20秒前
丘比特应助公冶立辉采纳,获得10
20秒前
今后应助公冶立辉采纳,获得10
20秒前
20秒前
eeeee发布了新的文献求助10
24秒前
乐正如彤发布了新的文献求助20
24秒前
Lucas应助晊恦采纳,获得10
24秒前
122发布了新的文献求助10
27秒前
梅卡完成签到 ,获得积分10
28秒前
32秒前
上官若男应助松本润不足采纳,获得10
33秒前
852应助辣子鸡采纳,获得10
33秒前
Ava应助公冶立辉采纳,获得10
33秒前
我是老大应助公冶立辉采纳,获得10
33秒前
领导范儿应助公冶立辉采纳,获得10
33秒前
Orange应助公冶立辉采纳,获得10
33秒前
完美世界应助公冶立辉采纳,获得10
33秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149387
求助须知:如何正确求助?哪些是违规求助? 2800406
关于积分的说明 7840028
捐赠科研通 2458019
什么是DOI,文献DOI怎么找? 1308162
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706