Gaussian approximation potentials for accurate thermal properties of two-dimensional materials

原子间势 非谐性 分子动力学 密度泛函理论 声子 高斯分布 统计物理学 工作(物理) 材料科学 物理 量子力学
作者
Tuğbey Kocabaş,Murat Keçeli,Álvaro Vázquez‐Mayagoitia,Cem Sevik
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:15 (19): 8772-8780 被引量:9
标识
DOI:10.1039/d3nr00399j
摘要

Two-dimensional materials (2DMs) continue to attract a lot of attention, particularly for their extreme flexibility and superior thermal properties. Molecular dynamics simulations are among the most powerful methods for computing these properties, but their reliability depends on the accuracy of interatomic interactions. While first principles approaches provide the most accurate description of interatomic forces, they are computationally expensive. In contrast, classical force fields are computationally efficient, but have limited accuracy in interatomic force description. Machine learning interatomic potentials, such as Gaussian Approximation Potentials, trained on density functional theory (DFT) calculations offer a compromise by providing both accurate estimation and computational efficiency. In this work, we present a systematic procedure to develop Gaussian approximation potentials for selected 2DMs, graphene, buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We validate our approach through calculations that require various levels of accuracy in interatomic interactions. The calculated phonon dispersion curves and lattice thermal conductivity, obtained through harmonic and anharmonic force constants (including fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in which the generated GAP potentials were used to compute higher-order force constants instead of DFT, demonstrated the first-principles level accuracy of the potentials for interatomic force description. Molecular dynamics simulations based on phonon density of states calculations, which agree closely with DFT-based calculations, also show the success of the generated potentials in high-temperature simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到,获得积分10
刚刚
秋半梦完成签到,获得积分10
刚刚
Lchemistry完成签到,获得积分10
刚刚
小李李李李李李er关注了科研通微信公众号
刚刚
Ava应助婷123采纳,获得10
刚刚
1351567822应助小可爱采纳,获得50
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
wanci应助zeannezg采纳,获得10
2秒前
3秒前
Cheney_lee发布了新的文献求助10
3秒前
LzG完成签到,获得积分10
3秒前
4秒前
小二郎应助材料小白采纳,获得10
4秒前
25号底片发布了新的文献求助10
4秒前
111发布了新的文献求助10
4秒前
5秒前
科研通AI6应助LL采纳,获得10
5秒前
6秒前
萤火虫发布了新的文献求助10
6秒前
爱听歌代芙应助陌上采纳,获得10
6秒前
6秒前
一点通完成签到,获得积分10
6秒前
7秒前
7秒前
缥缈傥发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
cdx完成签到,获得积分10
9秒前
乐乐应助huilin采纳,获得10
9秒前
柒柒完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
在水一方应助多情的奄采纳,获得10
11秒前
Giroro_roro发布了新的文献求助10
11秒前
11秒前
潇洒皮带完成签到,获得积分10
11秒前
Hi发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006