热稳定性
生物
突变体
蛋白质工程
定向进化
碱性磷酸酶
酶
计算生物学
生物化学
磷酸酶
遗传学
基因
作者
Yusuke Hagiwara,Yasuhiro Mihara,Tomoharu Motoyama,Sohei Ito,Shogo Nakano
摘要
ABSTRACT Mammalian alkaline phosphatase (AP) is widely used in diagnostics and molecular biology but its widespread use is impaired because it is difficult to express in Escherichia coli and has low thermostability. To overcome these challenges, we employed sequence-based protein redesign methods, specifically full consensus design (FCD) and ancestral sequence reconstruction (ASR), to create APs with enhanced properties. Biochemical analyses revealed that these newly designed APs exhibited improved levels of expression in their active form and increased thermostability compared to bovine intestinal AP isozyme II (bIAPII), without impeding enzymatic activity. Notably, the activity in culture broth of the designed APs was an order of magnitude higher than that of bIAPII, and their thermal stability increased by 13°C–17°C (measured as T 50 ). We also assessed 28 single-point mutants of bIAPII to identify regions influencing thermostability and expression level; these mutations were common in the engineered APs but not in bIAPII. Specific mutations, such as T413E and G402S, enhanced thermostability, whereas increasing the expression level required multiple mutations. This suggests that a synergistic effect is required to enhance the expression level. Mutations enhancing thermostability were located in the crown domain, while those improving expression were close to the dimer interface, indicating distinct mechanisms underpinning these enhancements. IMPORTANCE Sequence-based protein redesign methods, such as full consensus design (FCD) and ancestral sequence reconstruction (ASR), have the potential to construct new enzymes utilizing protein sequence data registered in a rapidly expanding sequence database. The high thermostability of these enzymes would expand their application in diagnostics and molecular biology. These enzymes have also demonstrated a high level of active expression by Escherichia coli . These characteristics make these APs attractive candidates for industrial application. In addition, different amino acid residues are primarily responsible for thermal stability and active expression, suggesting important implications for strategies for designing enzymes by FCD and ASR.
科研通智能强力驱动
Strongly Powered by AbleSci AI