A Hyper Physics-Informed Neural Network for Predicting Heat Transfer Patterns During the Curing Process in Aerospace Composite Manufacturing

航空航天 固化(化学) 人工神经网络 复合数 传热 材料科学 过程(计算) 制造工程 计算机科学 机械工程 人工智能 工程类 航空航天工程 复合材料 物理 机械 操作系统
作者
Anirudh Deodhar,Milad Ramezankhani,Rishi Yash Parekh,Dagnachew Birru
标识
DOI:10.1115/imece2024-144949
摘要

Abstract The importance of fast and accurate process simulation is crucial in various manufacturing settings to enable both design experimentation and real-time monitoring and control. Traditional numerical simulations, however, are often too slow and computationally demanding for real-time applications. Physics-Informed Neural Networks (PINN) offer a promising alternative but struggle with dynamic prediction and generalization due to the need for retraining with any change in system configurations. To overcome this, Hypernetwork-based PINN (HyperPINN) has been developed. HyperPINN utilizes a secondary neural network to generate necessary weights for the primary PINN network based on input system configurations, thus avoiding retraining for different conditions. This paper showcases the use of HyperPINN in simulating the heat transfer patterns of a curing process for aerospace-grade composites. The process involves modeling transient heat transfer in a one-dimensional composite part. The Hypernetwork and the primary PINN are jointly trained across various system configurations, allowing the Hypernetwork to dynamically adjust PINN parameters as per the current conditions while maintaining adherence to physical laws. The zero-shot capability, along with near real-time inference and accuracy comparable to conventional simulations, makes HyperPINN ideal for digital twins, design optimization, and real-time process control. Additionally, the model can be adapted for other transient physical processes in manufacturing and process industries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI5应助爱吃鲷鱼烧采纳,获得10
刚刚
huenguyenvan完成签到,获得积分10
1秒前
1秒前
所所应助yjf采纳,获得10
2秒前
Hua完成签到 ,获得积分10
3秒前
猪猪hero发布了新的文献求助10
5秒前
CCC发布了新的文献求助10
5秒前
7秒前
Ning00000完成签到 ,获得积分10
7秒前
8秒前
坦率尔蝶完成签到 ,获得积分10
8秒前
小朋友发布了新的文献求助10
10秒前
科研通AI2S应助VPN不好用采纳,获得10
10秒前
华康发布了新的文献求助10
12秒前
12秒前
14秒前
华康完成签到,获得积分10
16秒前
yjf发布了新的文献求助10
17秒前
研友_祝鬼神完成签到,获得积分10
20秒前
sweetbearm应助南沈采纳,获得10
20秒前
矜悠发布了新的文献求助10
21秒前
xiaoqi完成签到,获得积分10
22秒前
踏实乌冬面完成签到,获得积分20
22秒前
Lawliet完成签到,获得积分10
23秒前
23秒前
山间风完成签到,获得积分10
23秒前
23秒前
23秒前
UU发布了新的文献求助10
26秒前
in应助Umair采纳,获得20
26秒前
lofi完成签到,获得积分10
26秒前
26秒前
26秒前
林森举报一个求助涉嫌违规
27秒前
shotgod发布了新的文献求助10
27秒前
zzyl完成签到,获得积分10
27秒前
young发布了新的文献求助100
28秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522962
求助须知:如何正确求助?哪些是违规求助? 3103939
关于积分的说明 9268115
捐赠科研通 2800675
什么是DOI,文献DOI怎么找? 1537078
邀请新用户注册赠送积分活动 715396
科研通“疑难数据库(出版商)”最低求助积分说明 708777