High-Throughput Exploration of Ti–V–Nb–Mo Carbide MXenes Using Neural Network Potentials and Their Evaluation as Catalysts for Hydrogen Evolution Reaction

MXenes公司 催化作用 材料科学 密度泛函理论 碳化物 过渡金属 分解水 分子动力学 化学物理 纳米技术 计算化学 化学 有机化学 生物化学 光催化 复合材料
作者
Mohammed Wasay Mudassir,Sriram Goverapet Srinivasan,Mahesh Mynam,Beena Rai
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c16965
摘要

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (Mn+1Xn) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure. Recently, high entropy MXenes were synthesized, opening a vast compositional space of potentially stable and functionally superior materials. Detailed atomistic modeling enables us to systematically explore this extensive design space, which is otherwise infeasible in experiments. We have developed a Neural Network Potential (NNP) to model (TixVyNbzMop)n+1Cn MXenes (x+y+z+p = 1; n = 1,2,3) by training against Density Functional Theory (DFT) data in an active learning fashion. We then used the developed NNP to perform hybrid Monte Carlo-Molecular Dynamics (MC-MD) simulations to identify thermodynamically stable compositions and investigate the relative arrangement of transition metal atoms within and across layers. Thermodynamic stability increased with Mo content and its presence on the surface layer. We further investigated the catalytic performance of stable MXenes for the HER and observed that the center of the oxygen p-band (εp) correlated well with the energy of adsorption of a hydrogen atom ΔG(*H). Subsurface metal atoms significantly influenced the ΔG(*H) values at the surface via both ligand and strain effects. Our work expands the space of potentially stable MXene compositions, providing targets for synthesis and their evaluation in various applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11关注了科研通微信公众号
刚刚
1秒前
光催化~发布了新的文献求助10
3秒前
科研通AI2S应助燕尔蓝采纳,获得10
3秒前
mimier发布了新的文献求助10
3秒前
坚强的咖啡豆完成签到,获得积分20
3秒前
闪闪如南关注了科研通微信公众号
4秒前
5秒前
wuji完成签到,获得积分10
6秒前
6秒前
共享精神应助yahonyoyoyo采纳,获得20
6秒前
6秒前
7秒前
8秒前
领导范儿应助yangxinLuo采纳,获得10
8秒前
10秒前
SciGPT应助终点站采纳,获得10
10秒前
眯眯眼的衬衫应助光催化~采纳,获得10
10秒前
djbj2022发布了新的文献求助10
10秒前
科研通AI2S应助包子采纳,获得10
11秒前
12秒前
慕青应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
18秒前
huzi发布了新的文献求助10
19秒前
热心渊思发布了新的文献求助10
21秒前
23秒前
华仔应助风中的安柏采纳,获得20
24秒前
mimier完成签到 ,获得积分20
25秒前
flush关注了科研通微信公众号
28秒前
orixero应助医路前行采纳,获得10
33秒前
35秒前
35秒前
斯文败类应助hhhh采纳,获得10
36秒前
37秒前
脑洞疼应助Kiyotaka采纳,获得20
37秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380680
求助须知:如何正确求助?哪些是违规求助? 2995820
关于积分的说明 8765665
捐赠科研通 2680884
什么是DOI,文献DOI怎么找? 1468231
科研通“疑难数据库(出版商)”最低求助积分说明 678902
邀请新用户注册赠送积分活动 670951