清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Implicit neural representation‐based method for metal‐induced beam hardening artifact reduction in X‐ray CT imaging

成像体模 单色 分割 计算机科学 非线性系统 衰减 图像质量 硬化(计算) 算法 梁(结构) 材料科学 光学 人工智能 物理 图像(数学) 图层(电子) 量子力学 复合材料
作者
Hyoung Suk Park,Jin Keun Seo,Kiwan Jeon
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17649
摘要

Abstract Background In X‐ray computed tomography (CT), metal‐induced beam hardening artifacts arise from the complex interactions between polychromatic X‐ray beams and metallic objects, leading to degraded image quality and impeding accurate diagnosis. A previously proposed metal‐induced beam hardening correction (MBHC) method provides a theoretical framework for addressing nonlinear artifacts through mathematical analysis, with its effectiveness demonstrated by numerical simulations and phantom experiments. However, in practical applications, this method relies on precise segmentation of highly attenuating materials and parameter estimations, which limit its ability to fully correct artifacts caused by the intricate interactions between metals and other dense materials, such as bone or teeth. Purpose This study aims to develop a parameter‐free MBHC method that eliminates the need for accurate segmentation and parameter estimations, thereby addressing the limitations of the original MBHC approach. Methods The proposed method employs implicit neural representations (INR) to generate two tomographic images: one representing the monochromatic attenuation distribution at a specific energy level, and another capturing the nonlinear beam hardening effects caused by the polychromatic nature of X‐ray beams. A loss function drives the generation of these images, where the predicted projection data is nonlinearly modeled by the combination of the two images. This approach eliminates the need for geometric and parameter estimation of metals, providing a more generalized solution. Results Numerical and phantom experiments demonstrates that the proposed method effectively reduces beam hardening artifacts caused by interactions between highly attenuating materials such as metals, bone, and teeth. Additionally, the proposed INR‐based method demonstrates potential in addressing challenges related to data insufficiencies, such as photon starvation and truncated fields of view in CT imaging. Conclusions The proposed generalized MBHC method provides high‐quality image reconstructions without requiring parameter estimations and segmentations, offering a robust solution for reducing metal‐induced beam hardening artifacts in CT imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助文艺猫咪采纳,获得10
29秒前
星辰大海应助xun采纳,获得10
48秒前
krajicek完成签到,获得积分10
55秒前
1分钟前
1分钟前
许子发布了新的文献求助10
1分钟前
文艺猫咪发布了新的文献求助10
1分钟前
jessicaw完成签到,获得积分10
1分钟前
1分钟前
Ji完成签到,获得积分10
1分钟前
白华苍松发布了新的文献求助10
1分钟前
gwbk完成签到,获得积分10
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
许子完成签到,获得积分10
1分钟前
今后应助Anto采纳,获得10
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
缥缈雍发布了新的文献求助20
2分钟前
清净163完成签到,获得积分10
3分钟前
3分钟前
3分钟前
陈纸溪发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
领导范儿应助残月初升采纳,获得10
4分钟前
晴天娃娃完成签到 ,获得积分10
4分钟前
4分钟前
残月初升发布了新的文献求助10
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
wanci应助陈纸溪采纳,获得10
4分钟前
5分钟前
5分钟前
白华苍松发布了新的文献求助10
5分钟前
陈纸溪发布了新的文献求助10
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131390
关于积分的说明 9391041
捐赠科研通 2831096
什么是DOI,文献DOI怎么找? 1556360
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715853