亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differences in Physiological and Agronomic Traits and Evaluation of Adaptation of Seven Maize Varieties

生物 主成分分析 适应性 特质 播种 随机区组设计 农学 园艺 生物技术 统计 数学 生态学 计算机科学 程序设计语言
作者
Shuqi Ding,Dan Zhang,Ying Hao,Mengting Hu,Huijuan Tian,Kaizhi Yang,Guolong Zhao,Ruohang Xu,Wentao Du
出处
期刊:Biology [MDPI AG]
卷期号:13 (12): 977-977
标识
DOI:10.3390/biology13120977
摘要

To better understand the growth adaptability of various maize varieties to the climate of the Alar region in Southern Xinjiang Province, an experiment was conducted using seven distinct maize varieties as test materials. A one-way randomized block design was applied to both experimental groups. In 2021 and 2022, a total of 19 indicators were observed for comparative analysis, including antioxidant enzyme activities and agronomic traits. Principal component analysis and cluster analysis were used to evaluate the adaptability of the maize varieties. The findings revealed that: (1) All seven maize varieties exhibited robust growth, with notable differences in their respective trait profiles. Specifically, the yield traits of Jin’ai 588 and Denghai 3672 showed relatively consistent performance over the two-year period. (2) Five principal components (100-kernel weight, bald tip length, catalase (CAT), number of leaves, and angle of leaf pinch at the ear) were extracted from the 19 traits via principal component analysis, with a cumulative contribution rate of 84.689%. This represented the majority of the information regarding the seven maize varieties. After calculating the comprehensive index F value, the results indicated that Xinyu 66 and Denghai 3672 had high composite scores, suggesting high production potential and suitability for cultivation in this region. Conversely, Xinyu 24 showed the lowest composite score, indicating that it is not suitable for planting in this area. (3) Ultimately, the seven maize varieties were categorized into three groups through cluster analysis; this is the same as the result of principal component analysis. This classification provides a reference for the promotion and utilization of different varieties in the southern border region and aims to optimize the comprehensive trait selection of the varieties studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
皮皮完成签到 ,获得积分10
16秒前
谷子完成签到 ,获得积分10
22秒前
思源应助调皮的大山采纳,获得10
38秒前
monster完成签到 ,获得积分10
43秒前
45秒前
47秒前
小屋藏夏发布了新的文献求助10
47秒前
ccc发布了新的文献求助10
49秒前
东北麻辣烫真好吃完成签到,获得积分10
53秒前
眼睛大香芦完成签到,获得积分10
54秒前
Gun发布了新的文献求助10
1分钟前
0000发布了新的文献求助10
1分钟前
爱笑的烨磊完成签到,获得积分10
1分钟前
CipherSage应助爱笑的烨磊采纳,获得10
1分钟前
斯文败类应助0000采纳,获得10
1分钟前
九枝。完成签到 ,获得积分10
1分钟前
昵称什么的不重要啦完成签到 ,获得积分10
1分钟前
1分钟前
小刘哥加油完成签到 ,获得积分10
1分钟前
我是老大应助燕海雪采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
枫于林完成签到 ,获得积分10
2分钟前
2分钟前
小蘑菇应助ccc采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
帅气的秘密完成签到 ,获得积分10
2分钟前
bluecat发布了新的文献求助10
2分钟前
2分钟前
bkagyin应助bluecat采纳,获得10
2分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413339
求助须知:如何正确求助?哪些是违规求助? 3015642
关于积分的说明 8871555
捐赠科研通 2703375
什么是DOI,文献DOI怎么找? 1482215
科研通“疑难数据库(出版商)”最低求助积分说明 685159
邀请新用户注册赠送积分活动 679927