Exploring job competency related to intelligent construction in China using a text mining method

中国 数据科学 计算机科学 心理学 知识管理 地理 考古
作者
Jingyu Yu,Jinqiang Wang,Qingyu Shi,Jie Xu,Jingfeng Wang
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-07-2024-0846
摘要

Purpose The construction industry is experiencing digital transformation, which is also defined as intelligent construction. With the rise of intelligent construction, job characteristics are changing rapidly. Current knowledge about job competencies required by intelligent construction is lacking. Therefore, the aim of this paper is to explore job competencies related to intelligent construction by text mining recruitment information. It is expected to reveal the trend of talent development for the intelligent construction industry. Design/methodology/approach A total of 375 job advertisements regarding the demanding professionals and industrial workers related to intelligent construction were collected and analyzed to reveal the demands of the current labor market. Different job posts related to intelligent construction were classified into 11 categories. Job competencies were extracted and analyzed using the latent Dirichlet allocation (LDA) model, frequency–inverse document frequency (TF-IDF) algorithm and k-means cluster analysis method. The text mining results identified 10 job competencies. Findings Currently, there was a high demand for high-tech talents in the labor market related to intelligent construction. Those high-tech job posts, such as software engineers and R&D staff, required digital technology, R&D skills, electrical automation knowledge and programming capability. Current employees demanding for intelligent construction are expected to be capable of both using information technology and having a general knowledge of the construction industry. Originality/value Through text mining of current job advertisements, the overall demand for compound talents in the labor market of intelligent construction were explored. The results provide empirical reference for personnel training and talent cultivation in the development of intelligent construction. Higher educational institutions, human resources professionals, as well as experts that are already employed or aspire to be employed in intelligent construction companies, would benefit from the results of our analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果新儿完成签到 ,获得积分10
2秒前
CipherSage应助正直的语蝶采纳,获得10
4秒前
研友_Z1WkgL完成签到,获得积分10
5秒前
清新晨完成签到,获得积分10
5秒前
纯情的天奇完成签到 ,获得积分10
7秒前
平常幻灵完成签到,获得积分20
7秒前
求助完成签到,获得积分10
8秒前
badbaby完成签到 ,获得积分10
9秒前
ANESTHESIA_XY完成签到 ,获得积分10
10秒前
11秒前
代SR完成签到 ,获得积分10
12秒前
12秒前
13秒前
kkk发布了新的文献求助10
15秒前
Chen完成签到 ,获得积分10
15秒前
16秒前
Tim完成签到 ,获得积分10
16秒前
哦吼完成签到,获得积分10
17秒前
HDD完成签到,获得积分10
19秒前
JOAIR发布了新的文献求助20
19秒前
体贴薯片完成签到,获得积分10
19秒前
chen完成签到,获得积分10
20秒前
21秒前
哈儿的跟班完成签到,获得积分10
21秒前
kkk完成签到,获得积分10
21秒前
DAVE完成签到 ,获得积分10
23秒前
靓丽的熠彤完成签到,获得积分10
25秒前
qks完成签到 ,获得积分10
26秒前
成事在人307完成签到,获得积分10
26秒前
ovo完成签到,获得积分10
27秒前
顾矜应助chen采纳,获得10
27秒前
大可完成签到 ,获得积分10
29秒前
30秒前
黄叶飞完成签到,获得积分10
30秒前
AN完成签到,获得积分10
30秒前
何处芳歇完成签到,获得积分10
31秒前
32秒前
licheng完成签到,获得积分10
32秒前
自觉的傥完成签到,获得积分10
33秒前
小小果妈完成签到 ,获得积分10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736779
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020421
捐赠科研通 2997407
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749656