Dopaminergic PET to SPECT domain adaptation: a cycle GAN translation approach

核医学 Spect成像 人工智能 单光子发射计算机断层摄影术 多巴胺转运体 医学 计算机科学 模式识别(心理学) 多巴胺能 多巴胺 内科学
作者
Leonor Lopes,Fangyang Jiao,Song Xue,Thomas Pyka,Korbinian Krieger,Jingjie Ge,Qian Xu,Rachid Fahmi,Bruce Spottiswoode,Ahmed A. Soliman,Ralph Buchert,Matthias Brendel,Jimin Hong,Yihui Guan,Claudio L. Bassetti,Axel Rominger,Chuantao Zuo,Kuangyu Shi,Ping Wu
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
标识
DOI:10.1007/s00259-024-06961-x
摘要

Abstract Purpose Dopamine transporter imaging is routinely used in Parkinson’s disease (PD) and atypical parkinsonian syndromes (APS) diagnosis. While [ 11 C]CFT PET is prevalent in Asia with a large APS database, Europe relies on [ 123 I]FP-CIT SPECT with limited APS data. Our aim was to develop a deep learning-based method to convert [ 11 C]CFT PET images to [ 123 I]FP-CIT SPECT images, facilitating multicenter studies and overcoming data scarcity to promote Artificial Intelligence (AI) advancements. Methods A CycleGAN was trained on [ 11 C]CFT PET ( n = 602, 72%PD) and [ 123 I]FP-CIT SPECT ( n = 1152, 85%PD) images from PD and non-parkinsonian control (NC) subjects. The model generated synthetic SPECT images from a real PET test set ( n = 67, 75%PD). Synthetic images were quantitatively and visually evaluated. Results Fréchet Inception Distance indicated higher similarity between synthetic and real SPECT than between synthetic SPECT and real PET. A deep learning classification model trained on synthetic SPECT achieved sensitivity of 97.2% and specificity of 90.0% on real SPECT images. Striatal specific binding ratios of synthetic SPECT were not significantly different from real SPECT. The striatal left-right differences and putamen binding ratio were significantly different only in the PD cohort. Real PET and real SPECT had higher contrast-to-noise ratio compared to synthetic SPECT. Visual grading analysis scores showed no significant differences between real and synthetic SPECT, although reduced diagnostic performance on synthetic images was observed. Conclusion CycleGAN generated synthetic SPECT images visually indistinguishable from real ones and retained disease-specific information, demonstrating the feasibility of translating [ 11 C]CFT PET to [ 123 I]FP-CIT SPECT. This cross-modality synthesis could enhance further AI classification accuracy, supporting the diagnosis of PD and APS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豌豆米应助烂漫的魂幽采纳,获得10
刚刚
星辰发布了新的文献求助10
刚刚
不会搞科研完成签到,获得积分0
1秒前
1秒前
1秒前
英姑应助美少叔叔采纳,获得10
1秒前
jess完成签到,获得积分10
2秒前
Jasper应助心灵美的大山采纳,获得10
2秒前
万能图书馆应助Yara.H采纳,获得10
2秒前
张建发布了新的文献求助10
2秒前
2秒前
眼睛大枫完成签到,获得积分10
3秒前
1993完成签到,获得积分10
4秒前
程程程完成签到,获得积分10
4秒前
4秒前
4秒前
kiwi完成签到 ,获得积分10
4秒前
金金完成签到,获得积分10
5秒前
所所应助魔幻嚓茶采纳,获得30
5秒前
天天快乐应助123采纳,获得10
6秒前
谦让新竹完成签到,获得积分10
6秒前
7秒前
7秒前
xcc完成签到,获得积分10
7秒前
快乐二方完成签到 ,获得积分10
7秒前
ping完成签到,获得积分10
7秒前
年鱼精完成签到 ,获得积分10
7秒前
完美世界应助tysun采纳,获得10
7秒前
小太爷发布了新的文献求助10
7秒前
7秒前
asdffgg814完成签到,获得积分10
7秒前
舒服的科研生活完成签到 ,获得积分10
8秒前
称心芷巧发布了新的文献求助10
8秒前
小青椒应助秋山伊夫采纳,获得30
8秒前
8秒前
8秒前
9秒前
gao完成签到 ,获得积分0
9秒前
张洁琳发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326352
求助须知:如何正确求助?哪些是违规求助? 4466603
关于积分的说明 13897487
捐赠科研通 4358965
什么是DOI,文献DOI怎么找? 2394361
邀请新用户注册赠送积分活动 1387869
关于科研通互助平台的介绍 1358726