右美托咪定
加药
谵妄
医学
重症监护室
重症监护医学
病危
置信区间
急诊医学
麻醉
镇静
内科学
作者
Hong Yeul Lee,Seung Min Chung,Dongwoo Hyeon,Hyun-Lim Yang,Hyung‐Chul Lee,Ho Geol Ryu,Hyeonhoon Lee
标识
DOI:10.1038/s41746-024-01335-x
摘要
Abstract Delirium can result in undesirable outcomes including increased length of stays and mortality in patients admitted to the intensive care unit (ICU). Dexmedetomidine has emerged for delirium prevention in these patients; however, optimal dosing is challenging. A reinforcement learning-based Artificial Intelligence model for Delirium prevention (AID) is proposed to optimize dexmedetomidine dosing. The model was developed and internally validated using 2416 patients (2531 ICU admissions) and externally validated on 270 patients (274 ICU admissions). The estimated performance return of the AID policy was higher than that of the clinicians’ policy in both derivation (0.390 95% confidence interval [CI] 0.361 to 0.420 vs. −0.051 95% CI −0.077 to −0.025) and external validation (0.186 95% CI 0.139 to 0.236 vs. −0.436 95% CI −0.474 to −0.402) cohorts. Our finding indicates that AID might support clinicians’ decision-making regarding dexmedetomidine dosing to prevent delirium in ICU patients, but further off-policy evaluation is required.
科研通智能强力驱动
Strongly Powered by AbleSci AI