Image Manipulation Detection Based on Irrelevant Information Suppression and Critical Information Enhancement

图像处理 计算机科学 图像增强 人工智能 计算机视觉 心理学 图像(数学)
作者
Yunxue Shao,Tingting Wang,Lingfeng Wang
标识
DOI:10.1177/30504554241301395
摘要

The image manipulation detection localization task differs from traditional computer vision tasks in that we focus more on capturing subtle and generic manipulation detection features in images. In this paper, we propose a novel method called irrelevant visual information suppression, which aims to alleviate the interference of irrelevant visual information in images on manipulation detection feature extraction, thereby obtaining generic manipulation traces that are more subtle and unrelated to semantic visual information. In general, most manipulation operations leave traces at manipulation edges. Therefore, we introduce a specially designed manipulated edge information enhancement branch aimed at identifying these edge artifacts more accurately. We construct a dual-branch network, where each branch uses ResNet-50 as the backbone to capture as many multi-scale manipulation features as possible. Finally, we adopt a multi-view feature learning method that combines the manipulated edge information enhancement branch with the irrelevant visual information suppression branch and is trained with multi-scale (pixel/edge/image/irrelevant visual information suppression) supervision. To validate the effectiveness of the proposed method, we conducted extensive experiments using five image manipulation localization datasets, including CASIAv1, CASIAv2, COVER, Columbia, and NIST16. The experimental results demonstrate that our proposed method can outperform state-of-the-art methods by a significant margin in terms of F1 score. Taking CASIAv1, COVER, and Columbia datasets as examples, compared with MVSS-Net published in ICCV 2021, our method has improved F1 scores by 7.1%, 6.3%, and 12.5%, respectively. The code used in this paper can be found at the following URL: https://github.com/ginwins/ISIE-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
刚刚
张立佳完成签到,获得积分10
刚刚
xiao6完成签到,获得积分10
1秒前
ekswai发布了新的文献求助10
1秒前
1秒前
qqyqqyqqyqqy发布了新的文献求助10
2秒前
刘小腿完成签到,获得积分10
2秒前
3秒前
SYLH应助学吧采纳,获得30
5秒前
5秒前
SciGPT应助杨璐骏采纳,获得10
5秒前
浦肯野应助skippy采纳,获得30
6秒前
Heaven发布了新的文献求助150
6秒前
刘小腿发布了新的文献求助10
6秒前
cruise发布了新的文献求助10
7秒前
Akim应助ekswai采纳,获得30
8秒前
Sam发布了新的文献求助10
8秒前
笨笨的蜡烛完成签到,获得积分10
8秒前
9秒前
一只小小羊羊完成签到 ,获得积分10
9秒前
顾矜应助LRRAM_809采纳,获得10
9秒前
SciGPT应助huanhuan采纳,获得10
10秒前
受伤的水星完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
13秒前
NexusExplorer应助韩靖仇采纳,获得10
13秒前
kingwill应助小林不熬夜采纳,获得20
14秒前
14秒前
cruise发布了新的文献求助10
14秒前
求文得文完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
17秒前
小马甲应助zhang采纳,获得10
17秒前
17秒前
Ghooor发布了新的文献求助10
18秒前
劲秉应助蓬蒿人采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470540
求助须知:如何正确求助?哪些是违规求助? 3063510
关于积分的说明 9083726
捐赠科研通 2753934
什么是DOI,文献DOI怎么找? 1511152
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698178