Efficiency and explainability of design‐oriented machine learning models to estimate seismic response, fragility, and loss of a steel building inventory

脆弱性 结构工程 计算机科学 法律工程学 工程类 地质学 物理化学 化学
作者
Mohsen Zaker Esteghamati,Shivalinga Baddipalli
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
标识
DOI:10.1002/eqe.4273
摘要

Abstract Machine learning (ML) has recently been used as an efficient surrogate to estimate different steps of performance‐based earthquake engineering (PBEE), from dynamic structural analysis to fragility and loss assessments. However, due to the varied data, models, and features in existing literature, the relative efficiency of ML models across different PBEE steps remains unclear. Additionally, the black‐box nature of advanced ML algorithms limits their ability to provide design‐oriented insights, hindering the broader application of ML in PBEE‐based design. This study provides a comprehensive comparison of the accuracy and explainability of design‐oriented ML models across different steps of PBEE using a consistent database of 621 steel moment frames with varying designs and geometry. Eight ML algorithms were used in a careful training workflow comprising feature selection, hyperparameter tuning, cross‐validation, and model inference. The sensitivity of model accuracy to representative PBEE outputs—maximum responses, median fragility, and expected annual loss—was assessed using statistical measures. In addition, the explainability of the best models for each step was examined to explore the relationship between design parameters and the corresponding PBEE output. The results show that while ML models can reasonably map design parameters to all different PBEE outputs, models accuracy was higher for drift responses, median fragilities, and component‐based loss metrics. In addition, the optimal algorithm remained the same across different PBEE steps, where support vector machines and random forests provided the highest accuracy with an average R 2 of 0.93 and 0.91 over different outputs on the test set. Although the selected feature sets varied across outputs and algorithms, height, number of stories, fundamental period, and the minimum of the beams’ moment of inertia were influential for both models and notably affected different PBEE outputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏卿应助我十分讨厌你采纳,获得30
2秒前
小蜜峰儿完成签到 ,获得积分10
3秒前
Focus_BG完成签到,获得积分10
4秒前
Akim应助西子阳采纳,获得10
4秒前
mzbgnk发布了新的文献求助10
4秒前
小酸奶完成签到,获得积分10
4秒前
4秒前
5秒前
冷酷芝完成签到,获得积分10
7秒前
tianshanfeihe完成签到 ,获得积分10
7秒前
牙牙侠发布了新的文献求助10
7秒前
ba完成签到,获得积分10
7秒前
8秒前
旋转鸡爪子应助偷乐采纳,获得10
8秒前
慕青应助content采纳,获得10
9秒前
orixero应助美味的薯片采纳,获得10
9秒前
安详的嵩发布了新的文献求助10
10秒前
流光发布了新的文献求助10
10秒前
Muller完成签到,获得积分10
12秒前
12秒前
KatzeBaliey完成签到,获得积分10
12秒前
12秒前
要减肥的晓曼关注了科研通微信公众号
13秒前
SciGPT应助天边外采纳,获得10
13秒前
14秒前
在水一方应助hsbuuwqbdubeq采纳,获得10
15秒前
16秒前
17秒前
丰富的灵枫完成签到,获得积分10
17秒前
花笙给花笙的求助进行了留言
17秒前
17秒前
我是老大应助西子阳采纳,获得10
18秒前
流光完成签到,获得积分10
18秒前
lixm完成签到,获得积分10
18秒前
云影cns完成签到 ,获得积分10
19秒前
叁壹粑粑完成签到,获得积分10
19秒前
nnnnn完成签到,获得积分10
20秒前
20秒前
好学的猪发布了新的文献求助10
20秒前
lixm发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070