Efficiency and explainability of design‐oriented machine learning models to estimate seismic response, fragility, and loss of a steel building inventory

脆弱性 结构工程 计算机科学 法律工程学 工程类 地质学 物理化学 化学
作者
Mohsen Zaker Esteghamati,Shivalinga Baddipalli
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
标识
DOI:10.1002/eqe.4273
摘要

Abstract Machine learning (ML) has recently been used as an efficient surrogate to estimate different steps of performance‐based earthquake engineering (PBEE), from dynamic structural analysis to fragility and loss assessments. However, due to the varied data, models, and features in existing literature, the relative efficiency of ML models across different PBEE steps remains unclear. Additionally, the black‐box nature of advanced ML algorithms limits their ability to provide design‐oriented insights, hindering the broader application of ML in PBEE‐based design. This study provides a comprehensive comparison of the accuracy and explainability of design‐oriented ML models across different steps of PBEE using a consistent database of 621 steel moment frames with varying designs and geometry. Eight ML algorithms were used in a careful training workflow comprising feature selection, hyperparameter tuning, cross‐validation, and model inference. The sensitivity of model accuracy to representative PBEE outputs—maximum responses, median fragility, and expected annual loss—was assessed using statistical measures. In addition, the explainability of the best models for each step was examined to explore the relationship between design parameters and the corresponding PBEE output. The results show that while ML models can reasonably map design parameters to all different PBEE outputs, models accuracy was higher for drift responses, median fragilities, and component‐based loss metrics. In addition, the optimal algorithm remained the same across different PBEE steps, where support vector machines and random forests provided the highest accuracy with an average R 2 of 0.93 and 0.91 over different outputs on the test set. Although the selected feature sets varied across outputs and algorithms, height, number of stories, fundamental period, and the minimum of the beams’ moment of inertia were influential for both models and notably affected different PBEE outputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星川发布了新的文献求助10
刚刚
bkagyin应助粘豆包采纳,获得10
1秒前
223311完成签到,获得积分10
1秒前
CZY完成签到,获得积分10
2秒前
3秒前
3秒前
潦草小狗完成签到,获得积分10
4秒前
互助遵法尚德应助张中阳采纳,获得10
5秒前
陈陈一一完成签到,获得积分10
6秒前
小二郎应助Kevin采纳,获得10
7秒前
李健应助燕知南采纳,获得10
7秒前
7秒前
轩辕德地发布了新的文献求助10
8秒前
研友_VZG7GZ应助王润采纳,获得10
8秒前
9秒前
10秒前
10秒前
baobao完成签到,获得积分20
10秒前
咸鱼完成签到,获得积分10
11秒前
11秒前
咎宝川完成签到 ,获得积分10
11秒前
李健应助shanage采纳,获得10
11秒前
不安青牛应助JiegeSCI采纳,获得10
12秒前
可耐的青雪完成签到 ,获得积分10
12秒前
徐per爱豆发布了新的文献求助10
12秒前
付银薇发布了新的文献求助10
12秒前
半世千秋关注了科研通微信公众号
12秒前
13秒前
Hudson完成签到,获得积分10
13秒前
小闫闫完成签到,获得积分10
13秒前
沧海一笑完成签到,获得积分10
13秒前
佳AOAOAO发布了新的文献求助10
13秒前
坚强亦丝应助小粽子采纳,获得10
14秒前
queer完成签到,获得积分10
14秒前
领导范儿应助lgh采纳,获得10
15秒前
lihuizhi发布了新的文献求助10
15秒前
Seth完成签到,获得积分10
16秒前
17秒前
miko完成签到,获得积分10
17秒前
海豚发布了新的文献求助20
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156110
求助须知:如何正确求助?哪些是违规求助? 2807513
关于积分的说明 7873605
捐赠科研通 2465844
什么是DOI,文献DOI怎么找? 1312456
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905