清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Efficiency and explainability of design‐oriented machine learning models to estimate seismic response, fragility, and loss of a steel building inventory

脆弱性 结构工程 计算机科学 法律工程学 工程类 地质学 物理化学 化学
作者
Mohsen Zaker Esteghamati,Shivalinga Baddipalli
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
标识
DOI:10.1002/eqe.4273
摘要

Abstract Machine learning (ML) has recently been used as an efficient surrogate to estimate different steps of performance‐based earthquake engineering (PBEE), from dynamic structural analysis to fragility and loss assessments. However, due to the varied data, models, and features in existing literature, the relative efficiency of ML models across different PBEE steps remains unclear. Additionally, the black‐box nature of advanced ML algorithms limits their ability to provide design‐oriented insights, hindering the broader application of ML in PBEE‐based design. This study provides a comprehensive comparison of the accuracy and explainability of design‐oriented ML models across different steps of PBEE using a consistent database of 621 steel moment frames with varying designs and geometry. Eight ML algorithms were used in a careful training workflow comprising feature selection, hyperparameter tuning, cross‐validation, and model inference. The sensitivity of model accuracy to representative PBEE outputs—maximum responses, median fragility, and expected annual loss—was assessed using statistical measures. In addition, the explainability of the best models for each step was examined to explore the relationship between design parameters and the corresponding PBEE output. The results show that while ML models can reasonably map design parameters to all different PBEE outputs, models accuracy was higher for drift responses, median fragilities, and component‐based loss metrics. In addition, the optimal algorithm remained the same across different PBEE steps, where support vector machines and random forests provided the highest accuracy with an average R 2 of 0.93 and 0.91 over different outputs on the test set. Although the selected feature sets varied across outputs and algorithms, height, number of stories, fundamental period, and the minimum of the beams’ moment of inertia were influential for both models and notably affected different PBEE outputs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰河完成签到 ,获得积分10
6秒前
jerry完成签到,获得积分10
11秒前
13秒前
zenabia完成签到 ,获得积分10
17秒前
无私代芹发布了新的文献求助10
28秒前
春夏秋冬完成签到 ,获得积分10
35秒前
雪白冥茗完成签到 ,获得积分10
44秒前
YTY完成签到,获得积分10
49秒前
热情的橙汁完成签到,获得积分10
59秒前
cgs完成签到 ,获得积分10
1分钟前
1分钟前
贝贝完成签到 ,获得积分10
1分钟前
XX2完成签到,获得积分10
1分钟前
自然亦凝完成签到,获得积分10
1分钟前
msd2phd完成签到,获得积分10
1分钟前
慕山完成签到 ,获得积分10
1分钟前
2903827997完成签到,获得积分10
1分钟前
LL完成签到,获得积分10
1分钟前
管靖易完成签到 ,获得积分10
1分钟前
ll完成签到,获得积分10
1分钟前
XX完成签到,获得积分10
1分钟前
1323834289完成签到,获得积分10
1分钟前
李音完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
chichenglin完成签到 ,获得积分0
2分钟前
江三村完成签到 ,获得积分10
3分钟前
游01完成签到 ,获得积分0
3分钟前
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
高贵宛海完成签到,获得积分10
3分钟前
胡杨树2006完成签到,获得积分10
3分钟前
3分钟前
Mason完成签到,获得积分10
4分钟前
灵巧胜完成签到 ,获得积分10
4分钟前
Emma完成签到 ,获得积分10
4分钟前
Wang_Joff完成签到,获得积分10
4分钟前
大模型应助奶油蜜豆卷采纳,获得10
4分钟前
马成双完成签到 ,获得积分10
4分钟前
4分钟前
lulululululu发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658317
求助须知:如何正确求助?哪些是违规求助? 4820097
关于积分的说明 15081256
捐赠科研通 4816827
什么是DOI,文献DOI怎么找? 2577721
邀请新用户注册赠送积分活动 1532572
关于科研通互助平台的介绍 1491262