亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficiency and explainability of design‐oriented machine learning models to estimate seismic response, fragility, and loss of a steel building inventory

脆弱性 结构工程 计算机科学 法律工程学 工程类 地质学 物理化学 化学
作者
Mohsen Zaker Esteghamati,Shivalinga Baddipalli
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
标识
DOI:10.1002/eqe.4273
摘要

Abstract Machine learning (ML) has recently been used as an efficient surrogate to estimate different steps of performance‐based earthquake engineering (PBEE), from dynamic structural analysis to fragility and loss assessments. However, due to the varied data, models, and features in existing literature, the relative efficiency of ML models across different PBEE steps remains unclear. Additionally, the black‐box nature of advanced ML algorithms limits their ability to provide design‐oriented insights, hindering the broader application of ML in PBEE‐based design. This study provides a comprehensive comparison of the accuracy and explainability of design‐oriented ML models across different steps of PBEE using a consistent database of 621 steel moment frames with varying designs and geometry. Eight ML algorithms were used in a careful training workflow comprising feature selection, hyperparameter tuning, cross‐validation, and model inference. The sensitivity of model accuracy to representative PBEE outputs—maximum responses, median fragility, and expected annual loss—was assessed using statistical measures. In addition, the explainability of the best models for each step was examined to explore the relationship between design parameters and the corresponding PBEE output. The results show that while ML models can reasonably map design parameters to all different PBEE outputs, models accuracy was higher for drift responses, median fragilities, and component‐based loss metrics. In addition, the optimal algorithm remained the same across different PBEE steps, where support vector machines and random forests provided the highest accuracy with an average R 2 of 0.93 and 0.91 over different outputs on the test set. Although the selected feature sets varied across outputs and algorithms, height, number of stories, fundamental period, and the minimum of the beams’ moment of inertia were influential for both models and notably affected different PBEE outputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
所所应助yayah采纳,获得10
45秒前
alaa发布了新的文献求助40
45秒前
50秒前
1分钟前
陈晶完成签到 ,获得积分10
1分钟前
alaa完成签到,获得积分20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
搜集达人应助平常映雁采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
传奇3应助柏风华采纳,获得10
2分钟前
Lucas应助Hazel采纳,获得30
2分钟前
矢思然完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
柏风华发布了新的文献求助10
2分钟前
Siren发布了新的文献求助30
2分钟前
2分钟前
FashionBoy应助动人的芷天采纳,获得10
2分钟前
2分钟前
嘟嘟完成签到 ,获得积分10
2分钟前
Hazel发布了新的文献求助30
2分钟前
小二郎应助Hazel采纳,获得30
3分钟前
Jayzie完成签到 ,获得积分10
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
3分钟前
洁琼93完成签到 ,获得积分10
3分钟前
cen完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
Hazel发布了新的文献求助30
4分钟前
科研通AI5应助洁琼93采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助20
4分钟前
柏风华完成签到,获得积分10
4分钟前
卿霜发布了新的文献求助15
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595381
求助须知:如何正确求助?哪些是违规求助? 4007777
关于积分的说明 12408512
捐赠科研通 3686375
什么是DOI,文献DOI怎么找? 2031815
邀请新用户注册赠送积分活动 1065060
科研通“疑难数据库(出版商)”最低求助积分说明 950410