AI-boosted and motion-corrected, wireless near-infrared sensing system for continuously monitoring laryngeal muscles

计算机科学 可穿戴计算机 惯性测量装置 人工智能 计算机视觉 模拟 生物医学工程 医学 嵌入式系统
作者
Yihan Liu,Arjun Putcha,Gavin Lyda,Nanbo Peng,Sai G. S. Pai,Thang Nguyen-Tien,Sicheng Xing,Peng Shang,Yuan Fan,Yizhang Wu,Wanrong Xie,Wubin Bai
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (51) 被引量:1
标识
DOI:10.1073/pnas.2410750121
摘要

Neuromuscular diseases pose significant health and economic challenges, necessitating innovative monitoring technologies for personalizable treatment. Existing devices detect muscular motions either indirectly from mechanoacoustic signatures on skin surface or via ultrasound waves that demand specialized skin adhesion. Here, we report a wireless wearable system, Laryngeal Health Monitor (LaHMo), designed to be conformally placed on the neck for continuously measuring movements of underlying muscles. The system uses near-infrared (NIR) light that features deep-tissue penetration and strong interaction with myoglobin to capture muscular locomotion. The incorporated inertial measurement unit sensor further decouples the superposition of signals from NIR recordings. Integrating a multimodal AI-boosted algorithm based on recurrent neural network, the system accurately classifies activities of physiological events. An adaptive model enables fast individualization without enormous data sources from the target user, facilitating its broad applicability. Long-term tests and simulations suggest the potential efficacy of the LaHMo platform for real-world applications, such as monitoring disease progression in neuromuscular disorders, evaluating treatment efficacy, and providing biofeedback for rehabilitation exercises. The LaHMo platform may serve as a general noninvasive, user-friendly solution for assessing neuromuscular function beyond the anterior neck, potentially improving diagnostics and treatment of various neuromuscular disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的俊驰应助shinn采纳,获得10
1秒前
魔仙堡完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
3秒前
llw发布了新的文献求助10
3秒前
六芒星发布了新的文献求助10
3秒前
鲤鱼青雪发布了新的文献求助10
3秒前
Lucas应助ysf采纳,获得10
3秒前
NIUB发布了新的文献求助10
3秒前
无花果应助啦啦啦啦采纳,获得10
3秒前
4秒前
V——V5555发布了新的文献求助20
6秒前
西红柿完成签到,获得积分10
6秒前
文学痞完成签到,获得积分10
7秒前
小球完成签到,获得积分10
7秒前
脑洞疼应助李牧采纳,获得10
7秒前
Ava应助Zhangqiang采纳,获得10
7秒前
充电宝应助gwh采纳,获得10
8秒前
科研通AI2S应助LGH采纳,获得10
8秒前
8秒前
8秒前
从全世界路过完成签到 ,获得积分10
8秒前
8秒前
lumingyu发布了新的文献求助10
8秒前
共享精神应助zxy采纳,获得10
8秒前
小蘑菇应助dm采纳,获得10
9秒前
快乐鞋垫发布了新的文献求助10
9秒前
9秒前
最爱松子完成签到 ,获得积分20
9秒前
香蕉觅云应助海印长城采纳,获得10
10秒前
Jasper应助花鳥院夕月采纳,获得10
10秒前
Lucas应助一一采纳,获得10
11秒前
六芒星发布了新的文献求助20
12秒前
12秒前
袋鼠发布了新的文献求助10
13秒前
江北小赵发布了新的文献求助10
13秒前
英姑应助江南第一生禽采纳,获得30
14秒前
西门晴发布了新的文献求助10
14秒前
浮游应助shinn采纳,获得10
14秒前
wjd193完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4605334
求助须知:如何正确求助?哪些是违规求助? 4013256
关于积分的说明 12426716
捐赠科研通 3693913
什么是DOI,文献DOI怎么找? 2036704
邀请新用户注册赠送积分活动 1069652
科研通“疑难数据库(出版商)”最低求助积分说明 953966