AI-boosted and motion-corrected, wireless near-infrared sensing system for continuously monitoring laryngeal muscles

计算机科学 可穿戴计算机 惯性测量装置 人工智能 计算机视觉 模拟 生物医学工程 医学 嵌入式系统
作者
Yihan Liu,Arjun Putcha,Gavin Lyda,Nanbo Peng,Sai G. S. Pai,Thang Nguyen-Tien,Sicheng Xing,Peng Shang,Yuan Fan,Yizhang Wu,Wanrong Xie,Wubin Bai
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (51) 被引量:1
标识
DOI:10.1073/pnas.2410750121
摘要

Neuromuscular diseases pose significant health and economic challenges, necessitating innovative monitoring technologies for personalizable treatment. Existing devices detect muscular motions either indirectly from mechanoacoustic signatures on skin surface or via ultrasound waves that demand specialized skin adhesion. Here, we report a wireless wearable system, Laryngeal Health Monitor (LaHMo), designed to be conformally placed on the neck for continuously measuring movements of underlying muscles. The system uses near-infrared (NIR) light that features deep-tissue penetration and strong interaction with myoglobin to capture muscular locomotion. The incorporated inertial measurement unit sensor further decouples the superposition of signals from NIR recordings. Integrating a multimodal AI-boosted algorithm based on recurrent neural network, the system accurately classifies activities of physiological events. An adaptive model enables fast individualization without enormous data sources from the target user, facilitating its broad applicability. Long-term tests and simulations suggest the potential efficacy of the LaHMo platform for real-world applications, such as monitoring disease progression in neuromuscular disorders, evaluating treatment efficacy, and providing biofeedback for rehabilitation exercises. The LaHMo platform may serve as a general noninvasive, user-friendly solution for assessing neuromuscular function beyond the anterior neck, potentially improving diagnostics and treatment of various neuromuscular disorders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
makabak发布了新的文献求助10
刚刚
刚刚
大曼曼曼曼完成签到,获得积分10
刚刚
伶俐的苡发布了新的文献求助10
1秒前
1秒前
whiteandpink098完成签到,获得积分10
2秒前
2秒前
sean完成签到,获得积分10
2秒前
3秒前
3秒前
研友_n0kYwL发布了新的文献求助10
3秒前
山丘完成签到,获得积分10
3秒前
Ava应助Tomin采纳,获得100
4秒前
Liu发布了新的文献求助10
4秒前
专注白昼应助maodoudou采纳,获得20
4秒前
4秒前
6666发布了新的文献求助10
4秒前
万能图书馆应助啊棕采纳,获得10
5秒前
周欣玙完成签到,获得积分10
5秒前
6秒前
汉堡包应助友好电话采纳,获得10
6秒前
搬砖发布了新的文献求助10
6秒前
6秒前
隐形曼青应助枯藤老柳树采纳,获得10
6秒前
jyby发布了新的文献求助10
6秒前
小女子常戚戚完成签到,获得积分10
7秒前
陶招完成签到,获得积分10
7秒前
奶油淘淘发布了新的文献求助30
7秒前
周欣玙发布了新的文献求助10
7秒前
7秒前
7秒前
斯文败类应助干净冬莲采纳,获得10
8秒前
知栀完成签到 ,获得积分10
9秒前
9秒前
9秒前
ALOHA发布了新的文献求助10
10秒前
10秒前
英吉利25发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526436
求助须知:如何正确求助?哪些是违规求助? 4616609
关于积分的说明 14554414
捐赠科研通 4554801
什么是DOI,文献DOI怎么找? 2496073
邀请新用户注册赠送积分活动 1476438
关于科研通互助平台的介绍 1448035