Deformation-Induced Multioptical Morphology Elastomer Constructed from Phosphorescent Nanospheres for Underwater Mechanical Sensing

弹性体 材料科学 磷光 变形(气象学) 形态学(生物学) 水下 复合材料 纳米技术 光学 地质学 荧光 物理 古生物学 海洋学
作者
Changxing Wang,Yayun Ning,Yifan Yue,Xiaoxiang Wen,Yuechi Xie,Guoli Du,Jianing Li,Jianing Li,Sen Yang,Xuegang Lu
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.5c00828
摘要

Combination of multioptical morphology, such as transmission, scattering, fluorescence (FL), and room-temperature phosphorescence (RTP), to build multisignal-integrated devices is highly attractive in future optical devices but extremely difficult owing to the poorly matched material design and construction principles. Here, we report a novel multioptical morphology elastomer (MOME) fabricated by encapsulating monodisperse RTP SiO2 nanoparticles (RTP-SiO2 NPs) with polydimethylsiloxane (PDMS). The switching behavior of optical signals is dependent on the deformation of MOME, such as stretching, bending, and squeezing. The MOME changes from a transparent state to a white scattered state under white light as the deformation increases, while the FL and RTP are significantly enhanced from the original weak state. During deformation, the air voids generated by the separation of RTP-SiO2 NPs and PDMS at the interface result in a refractive index mismatch, leading to a significant enhancement of light scattering and further causing deformation-induced self-scattering enhancement behavior in FL and RTP. Moreover, MOME also has intriguing modulation phenomena, such as dynamic deformation-regulated RTP during the decay process and solvent-deformation synergistically regulated optical switching behavior. On account of the outstanding optical properties, MOME is applied in daily visual monitoring of underwater pipelines, including displacement deviation, leakage, swelling, and localized anomalous protrusions. These findings provide important breakthroughs for the design of multioptical morphology integrated devices, demonstrating great potential for applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助朴素的元风采纳,获得10
刚刚
科目三应助爱老婆采纳,获得10
1秒前
Blank完成签到 ,获得积分10
2秒前
小巧的雅旋完成签到,获得积分10
3秒前
雷雷发布了新的文献求助10
4秒前
羊羊羊完成签到,获得积分10
4秒前
科研通AI5应助芒果与鱼采纳,获得10
5秒前
mt完成签到 ,获得积分20
6秒前
蛋黄啵啵完成签到 ,获得积分10
6秒前
小羊完成签到,获得积分10
6秒前
7秒前
CipherSage应助小郑同学采纳,获得20
7秒前
可爱的函函应助梦幻采纳,获得10
7秒前
7秒前
感谢云淡风清转发科研通微信,获得积分50
8秒前
Y20完成签到,获得积分10
10秒前
在水一方应助无心的无施采纳,获得10
10秒前
王超超完成签到,获得积分10
11秒前
感谢Chosen_1转发科研通微信,获得积分50
11秒前
多肉丸子发布了新的文献求助10
11秒前
留胡子的傲易完成签到,获得积分10
13秒前
13秒前
感谢含蓄的金鱼转发科研通微信,获得积分50
14秒前
14秒前
15秒前
JunJun完成签到 ,获得积分10
15秒前
三叔应助ch采纳,获得10
19秒前
潘潘发布了新的文献求助10
20秒前
20秒前
苹果惠完成签到,获得积分10
22秒前
22秒前
22秒前
22秒前
NicheFactor完成签到,获得积分10
23秒前
飘逸若冰完成签到,获得积分10
24秒前
浅梦完成签到,获得积分10
25秒前
joe_liu发布了新的文献求助10
26秒前
26秒前
27秒前
眯眯眼的士萧完成签到 ,获得积分10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737690
求助须知:如何正确求助?哪些是违规求助? 3281323
关于积分的说明 10024607
捐赠科研通 2998066
什么是DOI,文献DOI怎么找? 1645021
邀请新用户注册赠送积分活动 782472
科研通“疑难数据库(出版商)”最低求助积分说明 749814