亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bidirectional Interaction Directional Variance Attention Model Based on Increased-Transformer for Thyroid Nodule Classification

变压器 计算机科学 模式识别(心理学) 人工智能 工程类 电压 电气工程
作者
Ming Liu,Jianing Yao,Jianli Yang,Zhenzhen Wan,xiong lin
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/ad9f68
摘要

Abstract Malignant thyroid nodules are closely linked to cancer, making the precise classification of thyroid nodules into benign and malignant categories highly significant. However, the subtle differences in contour between benign and malignant thyroid nodules, combined with the texture features obscured by the inherent noise in ultrasound images, often result in low classification accuracy in most models. To address this, we propose a Bidirectional Interaction Directional Variance Attention Model based on Increased-Transformer, named IFormer-DVNet. This paper proposes the Increased-Transformer, which enables global feature modeling of feature maps extracted by the Convolutional Feature Extraction Module (CFEM). This design maximally alleviates noise interference in ultrasound images. The Bidirectional Interaction Directional Variance Attention module (BIDVA) dynamically calculates attention weights using the variance of input tensors along both vertical and horizontal directions. This allows the model to focus more effectively on regions with rich information in the image. The vertical and horizontal features are interactively combined to enhance the model's representational capability. During the model training process, we designed a Multi-Dimensional Loss function (MD Loss) to stretch the boundary distance between different classes and reduce the distance between samples of the same class. Additionally, the MD Loss function helps mitigate issues related to class imbalance in the dataset. We evaluated our network model using the public TNCD dataset and a private dataset. The results show that our network achieved an accuracy of 76.55% on the TNCD dataset and 93.02% on the private dataset. Compared to other state-of-the-art classification networks, our model outperformed them across all evaluation metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助重要的夏槐采纳,获得10
5秒前
9秒前
zzl完成签到,获得积分10
15秒前
16秒前
乐乱完成签到 ,获得积分10
19秒前
25秒前
云上人完成签到 ,获得积分10
33秒前
Shawn_54完成签到,获得积分10
33秒前
Reftro完成签到,获得积分10
36秒前
Ava应助22222采纳,获得10
37秒前
Reftro发布了新的文献求助10
38秒前
51秒前
1分钟前
1分钟前
小小完成签到,获得积分20
1分钟前
yxh完成签到 ,获得积分10
1分钟前
SciGPT应助仁爱的凡波采纳,获得10
1分钟前
1分钟前
不能吃太饱完成签到 ,获得积分10
1分钟前
22222发布了新的文献求助10
1分钟前
Fabio发布了新的文献求助10
1分钟前
1分钟前
22222发布了新的文献求助10
1分钟前
时光翩然轻擦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
祖宁完成签到,获得积分10
1分钟前
2分钟前
yxh发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
专注的飞瑶完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
不配.应助Reftro采纳,获得10
2分钟前
2分钟前
仁爱的凡波完成签到,获得积分10
2分钟前
2分钟前
月军完成签到,获得积分10
2分钟前
李在猛完成签到 ,获得积分10
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229674
求助须知:如何正确求助?哪些是违规求助? 2877215
关于积分的说明 8198542
捐赠科研通 2544697
什么是DOI,文献DOI怎么找? 1374549
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774