Fe2O3 Hollow Multishelled Structure Endowed Temporal Sequential Mass Release for Apoptosis/Ferroptosis‐Induced Combined Cancer Therapy

材料科学 细胞凋亡 癌症治疗 癌症 纳米技术 癌症研究 内科学 医学 生物 生物化学
作者
Ke Xu,Bin Guan,Yujie Cui,Linlin Qin,Hao Li,Hongfei Cheng,Dan Wang,Yuming Zhu,Gening Jiang,Siming Jiang,Decai Zhao,Li Zhao
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202419892
摘要

Abstract Cisplatin (CDDP) combined with pemetrexed (MTA) is commonly employed in the treatment of advanced non‐small cell lung cancer. However, conventional clinical administration methods fail to achieve precise spatiotemporal delivery within the tumor microenvironment (TME), resulting in inadequate control of local drug concentrations and impeding the synergistic efficacy of chemotherapeutic drugs. Aiming to address this issue, Fe 2 O 3 hollow multi‐shelled structure (HoMS) nanocarriers with spatiotemporally controlled release properties and co‐encapsulated CDDP and MTA into this nanocarrier are developed. The confined microenvironment provided by Fe 2 O 3 ‐HoMS enables a targeted and temporal sequential drug release tailored to clinical requirements. Furthermore, chemotherapy‐induced DNA damage leads to apoptosis, accompanied by a substantial generation of reactive oxygen species (ROS). The disruption of ROS homeostasis subsequently activates the ferroptosis pathway mediated by Fe 2 O 3 ‐HoMS. In summary, Fe 2 O 3 ‐HoMS exhibits a highly controlled and temporal sequential release of two chemotherapeutic drugs in TME, and the HoMS nanocarriers are further involved in the regulation of ferroptosis, realizing a triple sequential delivery system comprising CDDP‐MTA‐Fe 2+ and thus significantly enhancing the anti‐tumor efficacy against lung cancer. This study proposes a novel approach for temporal sequential drug delivery by optimizing nanocarrier design, addressing the clinical challenge of precisely controlled drug release within tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
Jeffery426发布了新的文献求助10
3秒前
娜娜子完成签到 ,获得积分10
3秒前
HEATHERJJ发布了新的文献求助10
5秒前
9秒前
Alkaid关注了科研通微信公众号
9秒前
闪闪龙猫应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
13秒前
butterfly完成签到,获得积分10
14秒前
14秒前
我刚上小学完成签到,获得积分10
14秒前
Survive完成签到,获得积分10
15秒前
酷波er应助欢迎scid采纳,获得10
15秒前
高大小懒猪完成签到,获得积分10
16秒前
YANG完成签到 ,获得积分10
16秒前
17秒前
zzl发布了新的文献求助10
18秒前
20秒前
20秒前
21秒前
小文发布了新的文献求助10
21秒前
CQU_SONIC完成签到,获得积分10
24秒前
25秒前
HUYUE发布了新的文献求助10
25秒前
泡泡球发布了新的文献求助10
25秒前
楠楠多多发布了新的文献求助30
27秒前
小白完成签到,获得积分10
28秒前
王弘化完成签到,获得积分20
28秒前
29秒前
大气亦巧完成签到,获得积分10
29秒前
所所应助五百采纳,获得10
30秒前
32秒前
35秒前
端庄蚂蚁发布了新的文献求助10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312179
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521402
捐赠科研通 2620485
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115