亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Subgraph Topology and Dynamic Graph Topology Enhanced Graph Learning and Pairwise Feature Context Relationship Integration for Predicting Disease-Related miRNAs

成对比较 图形 拓扑(电路) 背景(考古学) 计算机科学 拓扑图论 网络拓扑 特征(语言学) 理论计算机科学 数学 人工智能 生物 电压图 组合数学 计算机网络 折线图 古生物学 语言学 哲学
作者
Ping Xuan,Xiaoying Qi,Sentao Chen,Jing Gu,Xiuju Wang,Hui Cui,Jun Lu,Tiangang Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01757
摘要

As an increasing number of microRNAs (miRNAs) have become biomarkers of various human diseases, prediction of the candidate disease-related miRNAs is helpful for facilitating the early diagnosis of diseases. Most of the recent prediction models concentrated on learning of the features from the heterogeneous graph composed of miRNAs and diseases. However, they failed to fully exploit the subgraph structures consisting of multiple miRNA and disease nodes, and they also did not completely integrate the context relationships among the pairwise features. We proposed a prediction model, SFPred, to integrate and encode the local topologies from neighborhood subgraphs, the dynamically evolved heterogeneous graph topology, and the context among pairwise features. First, the importance of an miRNA (disease) node to another node is formulated according to the subgraphs composed of their neighbors. Second, the features of each miRNA (disease) node continuously change when the graph encoding gradually deepens for the miRNA-disease heterogeneous network. A strategy based on multi-layer perceptron (MLP) is designed to estimate the edge weights according to the changed node features and form the dynamic graph topology. Third, considering the context relationships among the features of a pair of miRNA and disease nodes, a context relationship sensitive transformer is constructed to integrate these relationships. Finally, since the previous encoding layer of the transformer contains more detailed features of the pairwise, we present a multiperspective residual strategy to supplement the detailed features to the following encoding layer from the channel perspective and the feature one, respectively. The extensive experiments confirmed that SFPred outperforms eight state-of-the-art methods for the prediction of miRNA-disease associations, and the ablation experiments validate the effectiveness of the proposed innovations. The recall rates for the top-ranked candidate miRNAs related to the diseases and the case studies on three diseases indicate SFPred's ability in screening the reliable candidates for subsequent biological experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
成就的白竹完成签到,获得积分10
30秒前
谷子完成签到 ,获得积分10
53秒前
Xiaoxiao应助科研通管家采纳,获得10
54秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
orixero应助科研通管家采纳,获得10
54秒前
1分钟前
xjz240221完成签到 ,获得积分10
1分钟前
Lucas应助xiaozhao采纳,获得10
1分钟前
精灵夜雨发布了新的文献求助10
1分钟前
万能图书馆应助gqqq采纳,获得30
1分钟前
Noob_saibot完成签到,获得积分10
1分钟前
1分钟前
1分钟前
震动的听枫完成签到,获得积分10
1分钟前
爱静静应助Noob_saibot采纳,获得10
2分钟前
家家完成签到,获得积分10
2分钟前
俞思含发布了新的文献求助10
2分钟前
2分钟前
研友_LBorkn发布了新的文献求助10
2分钟前
Xiaoxiao应助科研通管家采纳,获得10
2分钟前
3分钟前
土豪的灵竹完成签到 ,获得积分10
3分钟前
3分钟前
狮子沟核聚变骡子完成签到 ,获得积分10
3分钟前
研友_LBorkn完成签到,获得积分10
3分钟前
gqqq完成签到,获得积分10
3分钟前
3分钟前
XCHI完成签到 ,获得积分10
3分钟前
gqqq发布了新的文献求助30
3分钟前
明亮紫易完成签到,获得积分10
4分钟前
gqqq发布了新的文献求助10
4分钟前
斯文败类应助稳重的睿渊采纳,获得10
4分钟前
4分钟前
Xiaoxiao应助科研通管家采纳,获得10
4分钟前
无花果应助科研通管家采纳,获得10
4分钟前
Xiaoxiao应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555693
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390797
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556299
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803