亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temporal-structural importance weighted graph convolutional network for temporal knowledge graph completion

计算机科学 可扩展性 图形 时间戳 嵌入 知识图 加速 理论计算机科学 人工智能 并行计算 计算机安全 数据库
作者
Haojie Nie,Xiangguo Zhao,Xin Yao,Qingling Jiang,Xin Bi,MA Yu-liang,Yongjiao Sun
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:143: 30-39 被引量:10
标识
DOI:10.1016/j.future.2023.01.012
摘要

Knowledge graph completion (KGC) tasks are aimed to reason out missing facts in a knowledge graph. However, knowledge often evolves over time, and static knowledge graph completion methods have difficulty in identifying its changes. Scholars have focus on temporal knowledge graph completion (TKGC). Most existing TKGC methods incorporate temporal information into triples and convert them into KGC tasks, ignoring the impact of temporal information on quaternions. Furthermore, existing embedding learning methods based on message-passing network aggregate features passed by neighbors with the same attention, ignoring the complex structure information that each node has different importance in passing the message. Therefore, to capture the impact of temporal information on quaternions and structural information on nodes, we proposed a TKGC method based on temporal attention learning (TAL-TKGC), which includes a temporal attention module and an importance-weighted GCN. The temporal attention module was designed to capture the deep connection between timestamps entities and relations at the semantic levels. The importance-weighted GCN considers the structural importance and attention of temporal information to entities for weighted aggregation. Finally, we conducted experiments on two public datasets, and the results proved the performance of our method. We also performed the speedup experiments in a distributed environment, and the proposed model has an excellent scalability on multiple GPUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
李昕123完成签到 ,获得积分10
14秒前
慕青应助zj采纳,获得10
20秒前
41秒前
41秒前
higgs完成签到,获得积分10
43秒前
淡淡十三发布了新的文献求助30
46秒前
zcg发布了新的文献求助10
47秒前
cheesy发布了新的文献求助10
51秒前
cheesy完成签到,获得积分10
1分钟前
zj关注了科研通微信公众号
1分钟前
Yu完成签到,获得积分10
1分钟前
1分钟前
天天快乐应助温暖砖头采纳,获得10
1分钟前
d00007发布了新的文献求助10
1分钟前
1分钟前
斯文败类应助面包呀采纳,获得10
1分钟前
间质发布了新的文献求助10
1分钟前
zj发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
淡淡十三完成签到,获得积分10
1分钟前
SYX完成签到 ,获得积分10
1分钟前
香蕉觅云应助xuan采纳,获得10
1分钟前
1分钟前
Yz完成签到 ,获得积分10
1分钟前
xuan发布了新的文献求助10
2分钟前
青树柠檬完成签到 ,获得积分10
2分钟前
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
温暖砖头发布了新的文献求助10
2分钟前
Chris完成签到 ,获得积分0
2分钟前
打打应助漱泉枕石采纳,获得10
2分钟前
2分钟前
漱泉枕石发布了新的文献求助10
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307345
求助须知:如何正确求助?哪些是违规求助? 2941006
关于积分的说明 8500094
捐赠科研通 2615318
什么是DOI,文献DOI怎么找? 1428830
科研通“疑难数据库(出版商)”最低求助积分说明 663581
邀请新用户注册赠送积分活动 648410