First Trimester Prediction of Preterm Birth in Patient Plasma with Machine-Learning-Guided Raman Spectroscopy and Metabolomics

代谢组学 代谢组 拉曼光谱 医学 计算生物学 生物信息学 生物 光学 物理
作者
Lilly Synan,Saman Ghazvini,Saji Uthaman,Gabriel Cutshaw,Che-yu Lee,Joshua R. Waite,Xiaona Wen,Soumik Sarkar,Eugène Lin,Mark K. Santillan,Donna A. Santillan,Rizia Bardhan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (32): 38185-38200 被引量:2
标识
DOI:10.1021/acsami.3c04260
摘要

Preterm birth (PTB) is the leading cause of infant deaths globally. Current clinical measures often fail to identify women who may deliver preterm. Therefore, accurate screening tools are imperative for early prediction of PTB. Here, we show that Raman spectroscopy is a promising tool for studying biological interfaces, and we examine differences in the maternal metabolome of the first trimester plasma of PTB patients and those that delivered at term (healthy). We identified fifteen statistically significant metabolites that are predictive of the onset of PTB. Mass spectrometry metabolomics validates the Raman findings identifying key metabolic pathways that are enriched in PTB. We also show that patient clinical information alone and protein quantification of standard inflammatory cytokines both fail to identify PTB patients. We show for the first time that synergistic integration of Raman and clinical data guided with machine learning results in an unprecedented 85.1% accuracy of risk stratification of PTB in the first trimester that is currently not possible clinically. Correlations between metabolites and clinical features highlight the body mass index and maternal age as contributors of metabolic rewiring. Our findings show that Raman spectral screening may complement current prenatal care for early prediction of PTB, and our approach can be translated to other patient-specific biological interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LeeSunE完成签到,获得积分20
刚刚
oracle完成签到,获得积分10
刚刚
刚刚
橘子贴贴完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
安静发卡完成签到 ,获得积分10
2秒前
qqqqq完成签到,获得积分10
2秒前
上官若男应助zlfk采纳,获得10
3秒前
haorui完成签到,获得积分10
3秒前
3秒前
sinlar发布了新的文献求助10
3秒前
duan发布了新的文献求助10
3秒前
仁爱水之发布了新的文献求助10
4秒前
Mine发布了新的文献求助10
4秒前
5秒前
领导范儿应助那些年采纳,获得10
5秒前
彭于晏应助欢呼的雪珍采纳,获得10
5秒前
Muxi完成签到,获得积分10
5秒前
5秒前
清话鹿酒发布了新的文献求助50
6秒前
6秒前
嘟嘟嘟嘟嘟完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
洛苏完成签到,获得积分10
7秒前
小羽毛完成签到,获得积分10
7秒前
jfaioe完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
10秒前
Muxi发布了新的文献求助10
10秒前
xupt唐僧完成签到,获得积分10
10秒前
jin发布了新的文献求助10
11秒前
单薄的南蕾完成签到 ,获得积分10
11秒前
科目三应助阿信必发JACS采纳,获得10
11秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441016
求助须知:如何正确求助?哪些是违规求助? 3037387
关于积分的说明 8968794
捐赠科研通 2725927
什么是DOI,文献DOI怎么找? 1495136
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687879