Leveraging Joint-action Embedding in Multi-agent Reinforcement Learning for Cooperative Games

嵌入 强化学习 计算机科学 一般化 最大化 动作(物理) 接头(建筑物) 人工智能 功能(生物学) 数学优化 机器学习 数学 建筑工程 数学分析 物理 量子力学 进化生物学 工程类 生物
作者
Xingzhou Lou,Junge Zhang,Yali Du,Chao Yu,Zhaofeng He,Kaiqi Huang
出处
期刊:IEEE transactions on games [Institute of Electrical and Electronics Engineers]
卷期号:16 (2): 470-482 被引量:2
标识
DOI:10.1109/tg.2023.3302694
摘要

State-of-the-art multi-agent policy gradient (MAPG) methods have demonstrated convincing capability in many cooperative games. However, the exponentially growing joint-action space severely challenges the critic's value evaluation and hinders performance of MAPG methods. To address this issue, we augment Central-Q policy gradient with a joint-action embedding function and propose Mutual-information Maximization MAPG (M3APG). The joint-action embedding function makes joint-actions contain information of state transitions, which will improve the critic's generalization over the joint-action space by allowing it to infer joint-actions' outcomes. We theoretically prove that with a fixed joint-action embedding function, the convergence of M3APG is guaranteed. Experiment results on the StarCraft Multi-Agent Challenge (SMAC) demonstrate that M3APG gives evaluation results with better accuracy and outperform other MAPG basic models across various maps of multiple difficulty levels. We empirically show that our joint-action embedding model can be extended to value-based multi-agent reinforcement learning methods and state-of-the-art MAPG methods. Finally, we run ablation study to show that the usage of mutual information in our method is necessary and effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
QAQSS完成签到 ,获得积分10
2秒前
偶做前堂客完成签到 ,获得积分10
5秒前
静静完成签到 ,获得积分10
6秒前
紫婧完成签到,获得积分10
6秒前
BowieHuang应助活力书包采纳,获得10
6秒前
wang完成签到,获得积分10
8秒前
2010完成签到,获得积分10
9秒前
无脚鸟完成签到,获得积分10
9秒前
10秒前
英姑应助Lumos采纳,获得10
10秒前
terryok完成签到 ,获得积分10
13秒前
von完成签到,获得积分10
14秒前
历史真相完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
机灵的安南完成签到 ,获得积分10
18秒前
SY15732023811完成签到 ,获得积分10
19秒前
梅特卡夫完成签到,获得积分10
20秒前
燕燕完成签到,获得积分10
22秒前
酷炫书芹完成签到 ,获得积分10
23秒前
不扯先生完成签到,获得积分10
23秒前
24秒前
24秒前
wbb完成签到 ,获得积分10
24秒前
嘻嗷完成签到,获得积分10
24秒前
25秒前
量子星尘发布了新的文献求助10
28秒前
Gloria完成签到 ,获得积分10
29秒前
yyy完成签到 ,获得积分10
30秒前
31秒前
碗在水中央完成签到 ,获得积分10
31秒前
争气完成签到 ,获得积分10
33秒前
Xiaoyisheng完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
36秒前
希达通完成签到 ,获得积分10
39秒前
alvis完成签到 ,获得积分10
39秒前
40秒前
哥哥完成签到 ,获得积分10
43秒前
欢呼妙菱完成签到,获得积分10
45秒前
忽晚完成签到 ,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773428
求助须知:如何正确求助?哪些是违规求助? 5611061
关于积分的说明 15431143
捐赠科研通 4905922
什么是DOI,文献DOI怎么找? 2639929
邀请新用户注册赠送积分活动 1587829
关于科研通互助平台的介绍 1542833