Enhancing Mode-I and Mode-II fracture toughness of carbon fiber/epoxy laminated composites using 3D-printed polyamide interlayers

材料科学 复合材料 抗弯强度 环氧树脂 断裂韧性 聚酰胺 转移模塑 复合数 韧性 玻璃纤维 弯曲模量 分层(地质) 模具 古生物学 生物 构造学 俯冲
作者
Bertan Beylergi̇l,Volkan Duman
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications [SAGE Publishing]
卷期号:238 (3): 578-591 被引量:3
标识
DOI:10.1177/14644207231198961
摘要

Delamination is a critical concern in laminated composites, affecting their structural integrity and overall performance. This study investigates the enhancement of Mode-I and Mode-II fracture toughness in carbon fiber/epoxy (CF/EP) composites through the incorporation of 3D-printed polyamide (PA) interlayers. Vacuum-assisted resin transfer molding was utilized to fabricate composite laminates with and without 3D-printed PA interlayers. Comprehensive testing was conducted to assess the effect of 3D-printed PA interlayers on the Mode-I and Mode-II fracture toughness, interlaminar shear strength, and flexural properties, as well as thermomechanical response using dynamic mechanical analysis. The results revealed a significant improvement in critical energy release rates for both Mode-I and Mode-II (G Ic and G IIc ), increasing by 43.5% and 81.2% respectively, compared to the reference composites. This enhancement was primarily attributed to crack bridging and plastic deformation of PA filaments in the interlaminar region. Additionally, interlaminar shear strength increased by 17.4%. While the reference composites had a glass transition temperature of 117.3 °C, the PA-reinforced composites showed a slightly higher value at 119.6 °C, with no significant change in the glass transition temperature. tanδ max values increased from 0.321 to 0.576, suggesting better energy dissipation in PA-reinforced composites. However, flexural properties were adversely affected by the increased thickness and reduced fiber volume fraction due to the introduction of 3D-printed PA interlayers, with the flexural modulus decreasing by approximately 28% and the flexural strength by around 50%. These findings offer promising opportunities to enhance the performance of CF/EP composites under specific loading scenarios, thus expanding their potential applications across diverse industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松妙柏发布了新的文献求助10
刚刚
baibai完成签到 ,获得积分10
1秒前
1秒前
Ava应助无情的柏柳采纳,获得10
1秒前
晓晓完成签到,获得积分10
2秒前
CipherSage应助超级芷云采纳,获得10
2秒前
现代的访曼应助ppjkq1采纳,获得20
2秒前
3秒前
牛牛发布了新的文献求助10
3秒前
领导范儿应助33333采纳,获得10
5秒前
PPSlu完成签到,获得积分10
5秒前
6秒前
海棠完成签到,获得积分10
6秒前
啊啊发布了新的文献求助10
7秒前
春和景明发布了新的文献求助10
7秒前
小马甲应助可爱的菠萝采纳,获得30
11秒前
11秒前
彭于晏应助FleurdelisDZhang采纳,获得10
14秒前
糖布里部完成签到,获得积分10
14秒前
mammer完成签到 ,获得积分10
17秒前
JCC发布了新的文献求助10
18秒前
20秒前
21秒前
bkagyin应助lmh采纳,获得10
21秒前
小包完成签到 ,获得积分20
22秒前
Vivian完成签到,获得积分10
23秒前
雨天完成签到,获得积分10
23秒前
23秒前
23秒前
fangyuan完成签到,获得积分10
23秒前
Chenq1nss发布了新的文献求助10
25秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
躺躺发布了新的文献求助10
27秒前
fangyuan发布了新的文献求助10
28秒前
追寻的怜容完成签到,获得积分10
28秒前
酷波er应助tkx是流氓兔采纳,获得10
29秒前
ding应助ffffffff采纳,获得30
30秒前
WWW关闭了WWW文献求助
31秒前
春和景明完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309