摘要
Solar RRLEarly View 2300695 Research Article Visible-Light-Initiated Dehydrogenative Cyclization of o-Aminobenzamide and Alcohols for Coproduction of Quinazolinones and Hydrogen over PtS/ZnIn2S4 Xiao Du, Xiao Du Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P. R. ChinaSearch for more papers by this authorJiaqi Wang, Jiaqi Wang Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P. R. ChinaSearch for more papers by this authorHurunqing Liu, Hurunqing Liu Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P. R. ChinaSearch for more papers by this authorRusheng Yuan, Corresponding Author Rusheng Yuan [email protected] Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P. R. ChinaSearch for more papers by this authorZhaohui Li, Corresponding Author Zhaohui Li [email protected] orcid.org/0000-0002-3532-4393 Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P. R. ChinaSearch for more papers by this author Xiao Du, Xiao Du Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P. R. ChinaSearch for more papers by this authorJiaqi Wang, Jiaqi Wang Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P. R. ChinaSearch for more papers by this authorHurunqing Liu, Hurunqing Liu Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P. R. ChinaSearch for more papers by this authorRusheng Yuan, Corresponding Author Rusheng Yuan [email protected] Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P. R. ChinaSearch for more papers by this authorZhaohui Li, Corresponding Author Zhaohui Li [email protected] orcid.org/0000-0002-3532-4393 Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P. R. ChinaSearch for more papers by this author First published: 08 October 2023 https://doi.org/10.1002/solr.202300695Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract PtS/ZnIn2S4 nanocomposites are obtained via a microwave-assisted synthesis followed by a photoreduction. The resultant PtS/ZnIn2S4 nanocomposites are used as an effective multifunctional photocatalyst for the reaction between alcohols and o-aminobenzamide to coproduce quinazolinones and hydrogen under visible light, via a cascade alcohols/aldehydes transformation, condensation between aldehydes and o-aminobenzamide, as well as the dehydrogenation/cyclization to produce quinazolinones. PtS acts as an efficient cocatalyst to promote the dehydrogenation of both the alcohols and the condensation intermediates for the production of quinazolinones. An almost complete conversion of o-aminobenzamide was achieved in 24 h, with a yield of 98.8% to 2-phenyl-quinazline-4(3H)-one and quantitative hydrogen produced over PtS/ZnIn2S4 after irradiated for 24 h. The apparent quantum yield at 450 nm is determined to 15.2%. The superior activity observed over PtS/ZnIn2S4 nanocomposite as compared with that over either NiS/ZnIn2S4 or MoS2/ZnIn2S4 can be ascribed to a moderate binding between PtS and the surface adsorbed H*. This study supplies an effective, green, and atom-economic strategy for the synthesis of quinazolinones with coproduction of hydrogen under visible light. This work also demonstrates the high potential of fabrication of metal sulfide-based multifunctional catalysts for light-driven one-pot tandem/cascade reactions. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information Filename Description solr202300695-sup-0001-SuppData-S1.pdf284.2 KB Supplementary Material Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 V. Alagarsamy, K. Chitra, G. Saravanan, V. R. Solomon, M. T. Sulthana, B. Narendhar, Eur. J. Med. Chem. 2018, 151, 628. 2 S. Hati, U. Holzgrabe, S. Sen, Beilstein J. Org. Chem. 2017, 13, 1670. 3 Z. Zhang, M. Wang, C. Zhang, Z. Zhang, J. Lu, F. Wang, Chem. Commun. 2015, 51, 9205. 4 S. Schmidt, K. Castiglione, R. Kourist, Chem. Eur. J. 2018, 24, 1755. 5 X.-Y. Yu, J.-R. Chen, W.-J. Xiao, Chem. Rev. 2021, 121, 506. 6 K. P. S. Cheung, S. Sarkar, V. Gevorgyan, Chem. Rev. 2022, 122, 1543. 7 X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 2014, 43, 473. 8 L. Marzo, S. K. Pagire, O. Reiser, B. Koenig, Angew. Chem. Int. Ed. 2018, 57, 10034. 9 X. Deng, Z. Li, H. Garcia, Chem. Eur. J. 2017, 23, 11189. 10 D. Friedmann, A. Hakki, H. Kim, W. Choic, D. Bahnemannd, Green Chem. 2016, 18, 5391. 11 G. Sportelli, T. Boselli, S. Protti, N. Serpone, D. Ravelli, Sol. RRL 2023, 7, 2201008. 12 J. Wang, Z. Wang, K. Dai, J. Zhang, J. Mater. Sci. Technol. 2023, 165, 187. 13 F.-L. Hong, L.-W. Ye, Acc. Chem. Res. 2020, 53, 2003. 14 S. Patra, N. Maity, Coord. Chem. Rev. 2021, 434. 15 M. Hao, Z. Li, Sol. RRL 2021, 5, 2000454. 16 R. Miriam, D. Frederic, M. Santiago, C. Patricia, C. Avelino, S. Iván, ACS Sustainable Chem. Eng. 2023, 11, 12265. 17 C. M. R. Volla, L. Atodiresei, M. Rueping, Chem. Rev. 2014, 114, 2390. 18 M. R. Ghaleno, M. Ghaffari-Moghaddam, M. Khajeh, A. R. Oveisi, M. Bohlooli, J. Colloid Interface Sci. 2019, 535, 214. 19 Z. Chai, T.-T. Zeng, Q. Li, L.-Q. Lu, W.-J. Xiao, D. Xu, J. Am. Chem. Soc. 2016, 138, 10128. 20 P. K. Verma, Coord. Chem. Rev. 2022, 105, 472. 21 M.-Y. Qi, M. Conte, M. Anpo, Z.-R. Tang, Y.-J. Xu, Chem. Rev. 2021, 121, 13051. 22 J. Xue, H. Liu, S. Zeng, Y. Feng, Y. Zhang, Y. Zhu, M. Cheng, H. Zhang, L. Shi, G. Zhang, Sol. RRL 2022, 6, 2101042. 23 M. Hao, Y. Qin, J. Shen, B. Wang, Z. Li, ACS Catal. 2022, 12, 15282. 24 S. Meng, X. Ye, J. Zhang, X. Fu, S. Chen, J. Catal. 2018, 367, 159. 25 F. Huang, Z. Liu, Z. Yu, Angew. Chem., Int. Ed. 2016, 55, 862. 26 C. Gunanathan, D. Milstein, Science 2013, 341, 249. 27 G. Sivakumar, M. Subaramanian, E. Balaraman, ACS Sustainable Chem. Eng. 2022, 10, 7362. 28 Y. Qin, M. Hao, Z. Ding, Z. Li, J. Catal. 2022, 410, 156. 29 F. Li, L. Lu, P. Liu, Org. Lett. 2016, 18, 2580. 30 J. Wang, S. Sun, R. Zhou, Y. Li, Z. He, H. Ding, D. Chen, W. Ao, J. Mater. Sci. Technol. 2021, 78, 1. 31 X. Wang, Y. Li, Z. Li, Chinese J. Catal. 2021, 42, 409. 32 X. Zheng, Y. Song, Y. Liu, Y. Yang, D. Wu, Y. Yang, S. Feng, J. Li, W. Liu, Y. Shen, X. Tian, Coord. Chem. Rev. 2023, 475, 214898. 33 L. Xu, X. Deng, Z. Li, Appl. Catal., B 2018, 234, 50. 34 X. Jing, N. Lu, J. Huang, P. Zhang, Z. Zhang, J. Energy Chem. 2021, 58, 397. 35 F. Liu, Y. Gao, X. Chi, Z. Zhu, X. Wang, R. Guan, J. Environ. Chem. Eng. 2022, 10, 108840. 36 Y. Li, J. Cai, M. Hao, Z. Li, Green Chem. 2019, 21, 2345. 37 J. Huang, N. Dong, N. McEvoy, L. Wang, C. O. Coileain, H. Wang, C. P. Cullen, C. Chen, S. Zhang, L. Zhang, J. Wang, ACS Nano 2019, 13, 13390. 38 M. Hao, X. Deng, L. Xu, Z. Li, Appl. Catal., B 2019, 252, 18. 39 Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S. X. Dou, W. Sun, Adv. Func. Mater. 2017, 27, 1702317. 40 B. Wang, Y. Ding, Z. Deng, Z. Li, Chin. J. Catal. 2019, 40, 335. 41 Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2015, 54, 52. 42 Z. Huang, W. Luo, L. Ma, M. Yu, X. Ren, M. He, S. Polen, K. Click, B. Garrett, J. Lu, K. Amine, C. Hadad, W. Chen, A. Asthagiri, Y. Wu, Angew. Chem., Int. Ed. 2015, 54, 15181. 43 C. Gu, G. Zhou, J. Yang, H. Pang, M. Zhang, Q. Zhao, X. Gu, S. Tian, J. Zhang, L. Xu, Y. Tang, Chem. Eng. J. 2022, 443, 136321. 44 B. Lin, Y. Zhou, B. Xu, C. Zhu, W. Tang, Y. Niu, J. Di, P. Song, J. Zhou, X. Luo, L. Kang, R. Duan, Q. Fu, H. Liu, R. Jin, C. Xue, Q. Chen, G. Yang, K. Varga, Q. Xu, Y. Li, Z. Liu, F. Liu, Mater. Horiz. 2021, 8, 612. 45 Y. Zhang, Y. Gao, S. Yao, S. Li, H. Asakura, K. Teramura, H. Wang, D. Ma, ACS Catal. 2019, 9, 7967. 46 L. Ye, Z. Li, Appl. Catal., B 2014, 160, 552. 47 Y. Qin, J. Li, L. Chen, S. Lin, Z. Li, Sol. RRL 2023, 7, 2200966. Early ViewOnline Version of Record before inclusion in an issue2300695 ReferencesRelatedInformation