MOANS DV-Hop: An anchor node subset based localization algorithm for wireless sensor networks

Hop(电信) 无线传感器网络 算法 计算机科学 节点(物理) 无线 计算机网络 工程类 电信 结构工程
作者
V CH Sekhar Rao Rayavarapu,Arunanshu Mahapatro
出处
期刊:Ad hoc networks [Elsevier BV]
卷期号:152: 103323-103323 被引量:7
标识
DOI:10.1016/j.adhoc.2023.103323
摘要

Several applications have exploited wireless sensor networks (WSNs), and localization is a key WSN technology. The range-free localization technique is substantially less expensive than conventional range-based localization strategies since it does not require distance or angle measurements between the anchor and unknown nodes. The Distance Vector-Hop (DV-Hop) technique is a widespread localization solution for WSNs because of its straightforward theory and minimal cost. The coordinate estimating precision of the classic DV-Hop algorithm needs further improvement due to its large localization error. In this paper, a DV-Hop-based method utilising modified optimum anchor node subset (MOANS DV-Hop) is proposed to improve the localization performance of the DV-Hop algorithm. A strategy for anchor node deployment is proposed. An objective function is formulated to minimize the error in estimating coordinates of unknown nodes. With the MOANS DV-Hop algorithm, each anchor node first uses other anchor nodes to locate itself, then uses the Scaled General Learning Equilibrium Optimizer (SGLEO) algorithm to create an optimal subset made up of anchor nodes other than itself. The anchor node then updates its average hop size using the anchor node subset and broadcasts both the updated hop size and the anchor node subset to the nearby unknown nodes. An unknown node then determines its location using the Equilibrium Optimizer (EO) algorithm, the anchor node subset, and the updated hop size received from the closest anchor node. Simulation findings show that MOANS DV-Hop algorithm has a greater level of localization accuracy in coordinate estimation than both the classical and other improved DV-Hop methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方断秋完成签到,获得积分0
刚刚
刚刚
加油搬砖完成签到,获得积分20
3秒前
彭于晏应助Amanda采纳,获得10
3秒前
能HJY发布了新的文献求助20
3秒前
帅气白梦完成签到 ,获得积分10
3秒前
xly完成签到,获得积分20
4秒前
demo完成签到,获得积分10
4秒前
小文殊完成签到 ,获得积分10
4秒前
6秒前
7秒前
舒适鹤轩发布了新的文献求助10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
lemon应助科研通管家采纳,获得50
7秒前
热切菩萨应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
8秒前
热切菩萨应助科研通管家采纳,获得10
8秒前
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
热切菩萨应助科研通管家采纳,获得10
8秒前
柯一一应助科研通管家采纳,获得10
8秒前
热切菩萨应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
family完成签到,获得积分10
9秒前
充电宝应助傲娇的厉采纳,获得10
9秒前
11秒前
mx应助超cute宁采纳,获得10
12秒前
xly发布了新的文献求助10
12秒前
颛颛发布了新的文献求助10
13秒前
13秒前
13秒前
Rick发布了新的文献求助10
14秒前
16秒前
16秒前
Mendle完成签到 ,获得积分10
16秒前
18秒前
个性的汲发布了新的文献求助10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382