MOANS DV-Hop: An anchor node subset based localization algorithm for wireless sensor networks

Hop(电信) 无线传感器网络 算法 计算机科学 节点(物理) 无线 计算机网络 工程类 电信 结构工程
作者
V Ch Sekhar Rao Rayavarapu,Arunanshu Mahapatro
出处
期刊:Ad hoc networks [Elsevier]
卷期号:152: 103323-103323 被引量:1
标识
DOI:10.1016/j.adhoc.2023.103323
摘要

Several applications have exploited wireless sensor networks (WSNs), and localization is a key WSN technology. The range-free localization technique is substantially less expensive than conventional range-based localization strategies since it does not require distance or angle measurements between the anchor and unknown nodes. The Distance Vector-Hop (DV-Hop) technique is a widespread localization solution for WSNs because of its straightforward theory and minimal cost. The coordinate estimating precision of the classic DV-Hop algorithm needs further improvement due to its large localization error. In this paper, a DV-Hop-based method utilising modified optimum anchor node subset (MOANS DV-Hop) is proposed to improve the localization performance of the DV-Hop algorithm. A strategy for anchor node deployment is proposed. An objective function is formulated to minimize the error in estimating coordinates of unknown nodes. With the MOANS DV-Hop algorithm, each anchor node first uses other anchor nodes to locate itself, then uses the Scaled General Learning Equilibrium Optimizer (SGLEO) algorithm to create an optimal subset made up of anchor nodes other than itself. The anchor node then updates its average hop size using the anchor node subset and broadcasts both the updated hop size and the anchor node subset to the nearby unknown nodes. An unknown node then determines its location using the Equilibrium Optimizer (EO) algorithm, the anchor node subset, and the updated hop size received from the closest anchor node. Simulation findings show that MOANS DV-Hop algorithm has a greater level of localization accuracy in coordinate estimation than both the classical and other improved DV-Hop methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
九秋完成签到 ,获得积分10
1秒前
科研通AI2S应助Van采纳,获得10
4秒前
学术废物发布了新的文献求助10
4秒前
IAN发布了新的文献求助10
4秒前
安小蟹发布了新的文献求助30
4秒前
5秒前
5秒前
5秒前
riverflowing发布了新的文献求助10
6秒前
星辰大海应助biuesky采纳,获得10
6秒前
古古完成签到,获得积分10
7秒前
宋莱文发布了新的文献求助10
8秒前
xiaxiao应助actor2006采纳,获得100
8秒前
共享精神应助整齐泥猴桃采纳,获得10
9秒前
9秒前
9秒前
孤独的匕发布了新的文献求助10
9秒前
乐乐应助张可采纳,获得10
10秒前
11秒前
11秒前
威武从寒发布了新的文献求助10
12秒前
晨儿发布了新的文献求助10
13秒前
Owen应助晓晓采纳,获得10
14秒前
kisslll发布了新的文献求助10
14秒前
亮liang发布了新的文献求助10
15秒前
科研通AI2S应助核桃采纳,获得10
15秒前
李健的小迷弟应助阿北采纳,获得10
15秒前
CodeCraft应助riverflowing采纳,获得10
15秒前
16秒前
16秒前
英姑应助甜甜小蜜蜂采纳,获得10
17秒前
HH发布了新的文献求助10
19秒前
行宇完成签到,获得积分10
19秒前
19秒前
EMM发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
biuesky发布了新的文献求助10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260352
求助须知:如何正确求助?哪些是违规求助? 2901579
关于积分的说明 8316158
捐赠科研通 2571164
什么是DOI,文献DOI怎么找? 1396847
科研通“疑难数据库(出版商)”最低求助积分说明 653584
邀请新用户注册赠送积分活动 632008