热效率
氮氧化物
燃烧
汽油
氢
汽油直喷
氢燃料强化
环境科学
材料科学
废物管理
汽车工程
化学
工程类
有机化学
作者
Lei Wang,Haiyu Li,Zhaoming Huang,Li Wang,Weiguo Chen
标识
DOI:10.1177/16878132231189117
摘要
The combustion and emission characteristics of a hydrogen engine were investigated through experimental analysis using a GDI engine. To enable hydrogen in-cylinder direct injection, a specialized hydrogen gas injector was employed. A comparative analysis of the combustion performance between gasoline and hydrogen fuels in a spark-ignited engine was conducted. Additionally, the study experimentally explored the thermal efficiency and emission reduction potential of hydrogen engines in lean combustion modes. The results indicated a significant improvement in the combustion rate when hydrogen fuel was utilized in the spark-ignited engine. However, the effective thermal efficiency was found to be lower than that of gasoline fuel due to the delayed MBF50 under stoichiometric conditions. Furthermore, when compared to gasoline fuel, the reduction of CO and THC emissions was accompanied by an increase in NOx emissions. Nevertheless, optimizing the air dilution ratio in hydrogen engines led to an improvement in the effective thermal efficiency. Specifically, under medium load conditions, a Lambda value of 2.7 resulted in an effective thermal efficiency of 43.5%. Additionally, under ultra-lean conditions (Lambda > 2.3), NOx emissions could be reduced to below 50 ppm, reaching as low as 44 ppm. This study highlights the potential of improving combustion efficiency and reducing emissions by utilizing hydrogen fuel, particularly in lean combustion modes. It contributes to the continuous development of hydrogen engine technology and promotes the implementation of cleaner and more efficient energy solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI