Multistage Convolutional Autoencoder and BCM-LSTM Networks for RUL Prediction of Rolling Bearings

自编码 特征提取 计算机科学 方位(导航) 预言 人工智能 模式识别(心理学) 信号(编程语言) 深度学习 数据挖掘 程序设计语言
作者
Z. Wang,Jiangfeng Cheng,Hui Zheng,Xiaofu Zou,Fei Tao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:7
标识
DOI:10.1109/tim.2023.3317471
摘要

Remaining useful life (RUL) prediction plays a crucial role in bearing maintenance, as it directly affects the safe operation of equipment. This paper presents a rolling bearing RUL prediction method based on multi-stage convolutional autoencoder (MSCAE) with improved Long Short-Term Memory (LSTM). Considering that the accuracy of the final prediction results is constrained by the health index (HI) extraction, introducing the convolutional autoencoder enhanced by the full life-cycle mechanism, and the influence of the prediction model by the large concavity of the input HI is mitigated by introducing the LSTM enhanced by the bias correction mechanism (BCM). First, in the feature acquisition stage, the calculated time-domain features of the vibration signal are filtered using correlation calculations with RUL. Secondly, in the HI extraction stage, the three degradation stages of the bearing are divided using the Hilbert transform-based method, and then the MSCAE-based HI extraction model is built according to the classified stages. In the RUL prediction stage, the loss function of the LSTM is designed based on the BCM, and then the RUL prediction model is obtained. Finally, experiments are carried out with the XJTU-SY dataset, and the experimental results show that the method proposed in this paper can efficiently extract the HI, and can build a more effective RUL prediction model compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vicky完成签到,获得积分10
1秒前
科研通AI6应助姜晓枫采纳,获得10
1秒前
1秒前
Dominic7888完成签到,获得积分10
2秒前
xu完成签到,获得积分10
2秒前
JXY发布了新的文献求助10
2秒前
勤劳的鸡发布了新的文献求助30
3秒前
完美世界应助thinking采纳,获得10
3秒前
Lucas应助infe采纳,获得10
4秒前
王富贵发布了新的文献求助10
4秒前
4秒前
Allen完成签到,获得积分10
6秒前
6秒前
7秒前
Sabrina完成签到,获得积分10
7秒前
老张完成签到 ,获得积分10
7秒前
8秒前
单纯胡萝卜完成签到,获得积分10
9秒前
luo完成签到,获得积分10
9秒前
9秒前
虚幻夜白发布了新的文献求助10
10秒前
10秒前
张涛发布了新的文献求助30
10秒前
10秒前
圆圆发布了新的文献求助10
11秒前
12秒前
玉玉鼠发布了新的文献求助10
12秒前
13秒前
刘洋发布了新的文献求助10
14秒前
14秒前
笨笨西牛发布了新的文献求助10
14秒前
jy完成签到 ,获得积分10
15秒前
to高坚果发布了新的文献求助10
15秒前
passerby发布了新的文献求助10
16秒前
16秒前
pdx666完成签到,获得积分10
18秒前
丘比特应助缪伟采纳,获得10
18秒前
JXY完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
知名不具发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176