Multistage Convolutional Autoencoder and BCM-LSTM Networks for RUL Prediction of Rolling Bearings

自编码 特征提取 计算机科学 方位(导航) 预言 人工智能 模式识别(心理学) 信号(编程语言) 深度学习 数据挖掘 程序设计语言
作者
Z. Wang,Jiangfeng Cheng,Hui Zheng,Xiaofu Zou,Fei Tao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:7
标识
DOI:10.1109/tim.2023.3317471
摘要

Remaining useful life (RUL) prediction plays a crucial role in bearing maintenance, as it directly affects the safe operation of equipment. This paper presents a rolling bearing RUL prediction method based on multi-stage convolutional autoencoder (MSCAE) with improved Long Short-Term Memory (LSTM). Considering that the accuracy of the final prediction results is constrained by the health index (HI) extraction, introducing the convolutional autoencoder enhanced by the full life-cycle mechanism, and the influence of the prediction model by the large concavity of the input HI is mitigated by introducing the LSTM enhanced by the bias correction mechanism (BCM). First, in the feature acquisition stage, the calculated time-domain features of the vibration signal are filtered using correlation calculations with RUL. Secondly, in the HI extraction stage, the three degradation stages of the bearing are divided using the Hilbert transform-based method, and then the MSCAE-based HI extraction model is built according to the classified stages. In the RUL prediction stage, the loss function of the LSTM is designed based on the BCM, and then the RUL prediction model is obtained. Finally, experiments are carried out with the XJTU-SY dataset, and the experimental results show that the method proposed in this paper can efficiently extract the HI, and can build a more effective RUL prediction model compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
songcy7发布了新的文献求助10
刚刚
于予鱼完成签到,获得积分10
刚刚
Akim应助心驰天外采纳,获得10
刚刚
星辰大海应助sunidea采纳,获得10
1秒前
XXY完成签到,获得积分10
1秒前
穷光蛋完成签到,获得积分10
1秒前
新手菜鸟发布了新的文献求助10
1秒前
ZZL完成签到,获得积分10
2秒前
晚若旧发布了新的文献求助10
2秒前
2秒前
2秒前
大头牌金枪鱼完成签到,获得积分10
2秒前
3秒前
JinQ完成签到,获得积分10
3秒前
3秒前
坚定冰海完成签到,获得积分10
4秒前
5秒前
KM比比发布了新的文献求助10
5秒前
Rainstorm27完成签到,获得积分10
5秒前
清清完成签到,获得积分20
5秒前
钦钦小豆包完成签到,获得积分10
5秒前
6秒前
hhh完成签到,获得积分20
6秒前
NexusExplorer应助美好蜻蜓采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
Hello应助科研通管家采纳,获得30
7秒前
所所应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
吴旭东完成签到,获得积分10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
调皮冰姬应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769