Multistage Convolutional Autoencoder and BCM-LSTM Networks for RUL Prediction of Rolling Bearings

自编码 特征提取 计算机科学 方位(导航) 预言 人工智能 模式识别(心理学) 信号(编程语言) 深度学习 数据挖掘 程序设计语言
作者
Z. Wang,Jiangfeng Cheng,Hui Zheng,Xiaofu Zou,Fei Tao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:7
标识
DOI:10.1109/tim.2023.3317471
摘要

Remaining useful life (RUL) prediction plays a crucial role in bearing maintenance, as it directly affects the safe operation of equipment. This paper presents a rolling bearing RUL prediction method based on multi-stage convolutional autoencoder (MSCAE) with improved Long Short-Term Memory (LSTM). Considering that the accuracy of the final prediction results is constrained by the health index (HI) extraction, introducing the convolutional autoencoder enhanced by the full life-cycle mechanism, and the influence of the prediction model by the large concavity of the input HI is mitigated by introducing the LSTM enhanced by the bias correction mechanism (BCM). First, in the feature acquisition stage, the calculated time-domain features of the vibration signal are filtered using correlation calculations with RUL. Secondly, in the HI extraction stage, the three degradation stages of the bearing are divided using the Hilbert transform-based method, and then the MSCAE-based HI extraction model is built according to the classified stages. In the RUL prediction stage, the loss function of the LSTM is designed based on the BCM, and then the RUL prediction model is obtained. Finally, experiments are carried out with the XJTU-SY dataset, and the experimental results show that the method proposed in this paper can efficiently extract the HI, and can build a more effective RUL prediction model compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wshwx完成签到 ,获得积分10
1秒前
萌兰134发布了新的文献求助10
1秒前
1秒前
1秒前
深情安青应助蓝胖子采纳,获得10
4秒前
5秒前
5秒前
kjding完成签到,获得积分10
5秒前
阿比盖尔发布了新的文献求助10
6秒前
牛与马发布了新的文献求助10
7秒前
慕青应助烤肠采纳,获得10
8秒前
Xdz关闭了Xdz文献求助
8秒前
doctorhuo发布了新的文献求助10
9秒前
没烦有脑完成签到,获得积分10
9秒前
JS姜硕发布了新的文献求助10
9秒前
善学以致用应助小能饼干采纳,获得10
11秒前
12秒前
bkagyin应助von采纳,获得10
12秒前
12秒前
我要毕业完成签到 ,获得积分10
12秒前
12秒前
MissXia完成签到,获得积分10
12秒前
GeoEye应助萌兰134采纳,获得10
13秒前
jane22发布了新的文献求助10
15秒前
蓝胖子发布了新的文献求助10
16秒前
拉长的鹤完成签到,获得积分10
16秒前
傲慢与偏见zz应助lyy采纳,获得10
17秒前
sissiarno应助浮生采纳,获得100
17秒前
完美世界应助咕噜噜采纳,获得10
18秒前
高高梦松发布了新的文献求助10
18秒前
EadonChen发布了新的文献求助10
18秒前
20秒前
金光一闪发布了新的文献求助20
22秒前
席潮发布了新的文献求助10
22秒前
阿橘发布了新的文献求助10
25秒前
锋锋完成签到,获得积分10
26秒前
牛与马完成签到,获得积分10
27秒前
便宜小师傅完成签到 ,获得积分10
28秒前
英姑应助橘子海采纳,获得10
28秒前
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229144
求助须知:如何正确求助?哪些是违规求助? 2876975
关于积分的说明 8197101
捐赠科研通 2544315
什么是DOI,文献DOI怎么找? 1374291
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621720