Structural damage detection using deep learning and FE model updating techniques

计算机科学 有限元法 复制 实验数据 人工智能 机器学习 数据挖掘 算法 数学 工程类 结构工程 统计
作者
Yun-Woo Lee,Hee‐Soo Kim,Seongi Min,Hyungchul Yoon
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:2
标识
DOI:10.1038/s41598-023-46141-9
摘要

The structural condition can be estimated by various methods. Damage detection, as one of those methods, deals with identifying changes in specific features within structural behavior based on numerical models. Since the method is based on simulation for various damage conditions, there are limitations in applicability due to inevitable discrepancies between the analytical model and the actual structure. Finite element model updating is a technique for establishing a finite element model that can reflect the current state of a target structure based on the measured responses. It is performed based on optimization for various structural parameters, but the final output can converge differently depending on the initial model and the characteristics of the algorithm. Although the updated model may not faithfully replicate the target structure as it is, it can be considered equivalent in terms of the relationship between the structural properties and behavioral characteristics of the target. This allows for the analysis of changes in the mechanical relationships established for the target structure. The change can be related to structural damage, and artificial intelligence technology can provide an alternative solution in such complex problems where analytical approaches are challenging. Taking practical aspects from the aforementioned methods, a novel structural damage detection methodology is presented in this study for identifying the location and extent of the damage. Model updating is used to establish a reference model that reflects the structural characteristics of the target. Training data for various damage conditions based on the reference model allows the artificial intelligence networks to identify damage to the target structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
优雅的凝阳完成签到 ,获得积分10
2秒前
麦田里的守望者完成签到,获得积分10
2秒前
直率芮完成签到,获得积分10
4秒前
纯牛奶发布了新的文献求助10
4秒前
依旧发布了新的文献求助10
5秒前
大龙哥886发布了新的文献求助10
6秒前
能多吃点么你说完成签到 ,获得积分10
7秒前
8秒前
alden发布了新的文献求助10
8秒前
Owen应助hahaha采纳,获得10
11秒前
像猫的狗完成签到 ,获得积分10
11秒前
毛毛弟完成签到 ,获得积分10
12秒前
东西南北发布了新的文献求助10
14秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
脑洞疼应助依旧采纳,获得10
15秒前
纯牛奶完成签到,获得积分10
15秒前
小猫多鱼完成签到,获得积分10
16秒前
17秒前
19秒前
普普发布了新的文献求助10
21秒前
22秒前
超级的千青完成签到 ,获得积分10
24秒前
gzdxcll发布了新的文献求助30
24秒前
压缩完成签到 ,获得积分10
25秒前
hahaha完成签到,获得积分20
26秒前
alden完成签到,获得积分10
29秒前
EvaHo完成签到,获得积分10
31秒前
科研王完成签到 ,获得积分10
33秒前
mmyhn发布了新的文献求助10
36秒前
英姑应助普普采纳,获得10
38秒前
1111完成签到 ,获得积分10
40秒前
gzdxcll关注了科研通微信公众号
49秒前
humorlife完成签到,获得积分10
49秒前
111111完成签到,获得积分10
51秒前
认真的飞扬完成签到,获得积分10
51秒前
52秒前
SciGPT应助无心的荆采纳,获得10
58秒前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371589
求助须知:如何正确求助?哪些是违规求助? 2989704
关于积分的说明 8736799
捐赠科研通 2672949
什么是DOI,文献DOI怎么找? 1464289
科研通“疑难数据库(出版商)”最低求助积分说明 677484
邀请新用户注册赠送积分活动 668822