A quality detection method of corn based on spectral technology and deep learning model

人工智能 计算机科学 支持向量机 模式识别(心理学) 深度学习 试验装置 数据集 人工神经网络 卷积神经网络 数学 机器学习
作者
Jiao Yang,Xiaodan Ma,Haiou Guan,Yang Chen,Yifei Zhang,Guibin Li,Zesong Li,Yuxin Lu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:305: 123472-123472 被引量:10
标识
DOI:10.1016/j.saa.2023.123472
摘要

Corn is an important food crop in the world. With economic development and population growth, the nutritional quality of corn is of great significance to high-quality breeding, scientific cultivation and fine management. Aiming at the problems of cumbersome steps, time-consuming and laborious, and low accuracy in the current research on corn quality detection. This paper proposes to combine near-infrared (NIR) spectroscopy technology with deep learning technology to build a corn quality detection model based on convolutional neural network (LeNet-5). The original spectral data were preprocessed by wavelet transform (WT) and multivariate scattering correction (MSC) to remove noise interference and spectral scattering information. The Competitive Adaptive Reweighted Sampling Algorithm (CARS) was applied to optimize the characteristic wavenumber and reduce redundant data. According to the optimized characteristic wave number, it was input into the constructed corn quality detection model for simulation test, and the average detection accuracy rate of the test set was 96.46%, the average precision rate was 95.42%, the average recall rate was 97.92%, the average F1score was 96.64%, and the average recognition time was 51.95 s. Compared with traditional machine learning models such as BP neural network, K Nearest Neighbor (KNN), Support Vector Machine (SVM), Generalized Linear Model (GLM), Linear Discriminant Analysis (LDA), and Naive Bayesian (NB), the deep learning LeNet-5 network model constructed in this paper has an average accuracy increase of 39.32%, and has a higher detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Janice完成签到,获得积分10
1秒前
高高的天亦完成签到 ,获得积分10
1秒前
从容苡完成签到,获得积分10
2秒前
gzsy完成签到 ,获得积分10
2秒前
Lynn完成签到 ,获得积分10
2秒前
不吃芹菜完成签到,获得积分10
4秒前
美海与鱼完成签到,获得积分10
4秒前
帅气天荷完成签到 ,获得积分10
5秒前
Wjh123456完成签到,获得积分10
6秒前
A溶大美噶完成签到,获得积分10
6秒前
小柒完成签到,获得积分10
6秒前
酷波er应助Ren采纳,获得10
6秒前
7秒前
7秒前
dnmd完成签到,获得积分10
8秒前
Master完成签到 ,获得积分10
8秒前
霸气的念云完成签到,获得积分10
8秒前
小叙完成签到 ,获得积分10
10秒前
七月星河完成签到 ,获得积分10
10秒前
彭于晏应助纯真的安双采纳,获得10
10秒前
xjyyy完成签到 ,获得积分10
10秒前
爱学习的瑞瑞子完成签到 ,获得积分10
10秒前
windli完成签到,获得积分10
11秒前
11秒前
洁净的天德完成签到,获得积分10
11秒前
XSY0112发布了新的文献求助10
11秒前
tiger完成签到,获得积分10
12秒前
miemie66完成签到,获得积分10
12秒前
科研小白完成签到,获得积分10
12秒前
拾光发布了新的文献求助10
13秒前
致橡树完成签到,获得积分20
14秒前
郭元强完成签到,获得积分10
14秒前
fengyi2999完成签到,获得积分10
15秒前
诚心的毛豆完成签到,获得积分10
15秒前
稳重的蜡烛完成签到,获得积分10
15秒前
hunter完成签到,获得积分10
16秒前
庄彧完成签到 ,获得积分10
16秒前
个性雁芙发布了新的文献求助10
17秒前
纯真的安双完成签到,获得积分10
17秒前
独立卫生间完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555929
求助须知:如何正确求助?哪些是违规求助? 3131507
关于积分的说明 9391387
捐赠科研通 2831234
什么是DOI,文献DOI怎么找? 1556405
邀请新用户注册赠送积分活动 726554
科研通“疑难数据库(出版商)”最低求助积分说明 715890