A quality detection method of corn based on spectral technology and deep learning model

人工智能 计算机科学 支持向量机 模式识别(心理学) 深度学习 试验装置 数据集 人工神经网络 卷积神经网络 数学 机器学习
作者
Jiao Yang,Xiaodan Ma,Haiou Guan,Yang Chen,Yifei Zhang,Guibin Li,Zesong Li,Yuxin Lu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:305: 123472-123472 被引量:2
标识
DOI:10.1016/j.saa.2023.123472
摘要

Corn is an important food crop in the world. With economic development and population growth, the nutritional quality of corn is of great significance to high-quality breeding, scientific cultivation and fine management. Aiming at the problems of cumbersome steps, time-consuming and laborious, and low accuracy in the current research on corn quality detection. This paper proposes to combine near-infrared (NIR) spectroscopy technology with deep learning technology to build a corn quality detection model based on convolutional neural network (LeNet-5). The original spectral data were preprocessed by wavelet transform (WT) and multivariate scattering correction (MSC) to remove noise interference and spectral scattering information. The Competitive Adaptive Reweighted Sampling Algorithm (CARS) was applied to optimize the characteristic wavenumber and reduce redundant data. According to the optimized characteristic wave number, it was input into the constructed corn quality detection model for simulation test, and the average detection accuracy rate of the test set was 96.46%, the average precision rate was 95.42%, the average recall rate was 97.92%, the average F1score was 96.64%, and the average recognition time was 51.95 s. Compared with traditional machine learning models such as BP neural network, K Nearest Neighbor (KNN), Support Vector Machine (SVM), Generalized Linear Model (GLM), Linear Discriminant Analysis (LDA), and Naive Bayesian (NB), the deep learning LeNet-5 network model constructed in this paper has an average accuracy increase of 39.32%, and has a higher detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dabuliu完成签到 ,获得积分10
刚刚
畅快芷蝶发布了新的文献求助10
1秒前
朱大妹发布了新的文献求助10
2秒前
殷女士完成签到,获得积分10
2秒前
2秒前
还行完成签到,获得积分10
3秒前
3秒前
P_完成签到,获得积分10
3秒前
WW完成签到,获得积分10
3秒前
Jason举报老德求助涉嫌违规
3秒前
4秒前
shenqy完成签到,获得积分20
4秒前
5秒前
orixero应助泽丶采纳,获得10
6秒前
7秒前
YW给YW的求助进行了留言
7秒前
wtdd完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
十卄卅卌完成签到 ,获得积分10
8秒前
9秒前
see发布了新的文献求助10
9秒前
WD发布了新的文献求助10
9秒前
yj1506837246完成签到,获得积分10
9秒前
xiaoyu应助殷女士采纳,获得10
10秒前
SciGPT应助小叙采纳,获得10
10秒前
Akim应助秦磊采纳,获得10
10秒前
卢健辉完成签到,获得积分10
10秒前
Donby发布了新的文献求助10
11秒前
彭于晏应助海风吹采纳,获得10
11秒前
shuzi发布了新的文献求助10
12秒前
聪慧橘子发布了新的文献求助10
12秒前
aagnowy关注了科研通微信公众号
13秒前
ZYY发布了新的文献求助10
13秒前
13秒前
开心市民小刘完成签到,获得积分10
13秒前
13秒前
14秒前
SciGPT应助Cheryl采纳,获得10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487250
求助须知:如何正确求助?哪些是违规求助? 3075205
关于积分的说明 9140168
捐赠科研通 2767444
什么是DOI,文献DOI怎么找? 1518666
邀请新用户注册赠送积分活动 703213
科研通“疑难数据库(出版商)”最低求助积分说明 701689