Intelligent Prediction of Rolling Bearing Remaining Useful Life Based on Probabilistic DeepAR-Transformer Model

计算机科学 方位(导航) 适应性 人工智能 数据挖掘 自回归模型 概率逻辑 过程(计算) 特征提取 突出 机器学习 生态学 经济 计量经济学 生物 操作系统
作者
Linfeng Deng,Wei Li,Weiqiang Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015107-015107 被引量:9
标识
DOI:10.1088/1361-6501/acf874
摘要

Abstract Remaining useful life (RUL) prediction for rolling bearings requires highly accurate and stable long-term prediction capabilities in equipment health management, which demands that the prediction model has strong data reasoning and regression performance. However, it is difficult to accurately capture long-term dependencies via traditional convolutional neural network because the information loss and insufficient analysis are unavoidable during the feature extraction process. An end-to-end time series forecasting method called D-former for RUL prediction of rolling bearings is proposed in this paper. The method mainly consists of DeepAR and a multi-layer encoder, so it is able to extract degradation features directly from the original signal. This method has the following salient features: (1) the designed multi-head attention mechanism can highlight important feature information and realize parallel computing, so the method is extremely suitable for processing long-term time series; (2) the important time feature information is rearranged through DeepAR, so the method has the excellent domain adaptability, and it can achieve accurate prediction of rolling bearing RUL under different working conditions. The verification experiment was implemented on the IEEE PHM 2012 dataset and the XJTU-SY bearing dataset. The experimental results show that the proposed D-former method is actually superior to the existing mainstream RUL prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a涵发布了新的文献求助10
1秒前
汤圆完成签到,获得积分10
1秒前
拾柒完成签到,获得积分10
3秒前
小婷君发布了新的文献求助10
3秒前
...完成签到,获得积分10
3秒前
HS发布了新的文献求助10
3秒前
拿铁五分糖完成签到,获得积分10
4秒前
允怡发布了新的文献求助10
5秒前
大先生发布了新的文献求助10
5秒前
快乐镜子关注了科研通微信公众号
6秒前
6秒前
7秒前
7秒前
8秒前
汤圆发布了新的文献求助10
9秒前
HXT完成签到,获得积分10
10秒前
12秒前
正函数完成签到,获得积分10
12秒前
12秒前
专注太英完成签到,获得积分10
13秒前
小孟发布了新的文献求助10
14秒前
15秒前
阳光he完成签到,获得积分10
15秒前
orixero应助小婷君采纳,获得10
15秒前
song完成签到,获得积分10
18秒前
专注太英发布了新的文献求助10
19秒前
SciGPT应助灵巧的飞雪采纳,获得20
23秒前
25秒前
helpme发布了新的文献求助100
27秒前
烟酒不离生完成签到,获得积分10
27秒前
研友_VZG7GZ应助杜青采纳,获得10
27秒前
tina完成签到 ,获得积分10
28秒前
29秒前
土豪的大白完成签到 ,获得积分10
30秒前
30秒前
NexusExplorer应助英俊延恶采纳,获得10
32秒前
1renebaebae发布了新的文献求助10
33秒前
34秒前
asdfg完成签到,获得积分20
35秒前
沧海青州发布了新的文献求助10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538611
求助须知:如何正确求助?哪些是违规求助? 3116370
关于积分的说明 9324948
捐赠科研通 2814129
什么是DOI,文献DOI怎么找? 1546497
邀请新用户注册赠送积分活动 720575
科研通“疑难数据库(出版商)”最低求助积分说明 712086