A review of regularization strategies and solution techniques for ill-posed inverse problems, with application to inverse heat transfer problems

Tikhonov正则化 巴克斯-吉尔伯特法 反问题 数学 正规化(语言学) 数学优化 共轭梯度法 算法 奇异值分解 粒子群优化 支持向量机的正则化研究进展 计算机科学 应用数学 人工智能 数学分析
作者
Meenal Singhal,Kavita Goyal,Rohit Singla
出处
期刊:Reviews in Mathematical Physics [World Scientific]
卷期号:36 (01)
标识
DOI:10.1142/s0129055x23300078
摘要

With the presence of a large number of inversion algorithms for inverse heat transfer problems (IHTPs) and non-IHTPs, a need for review to have a holistic view is seen. An exhaustive literature review, with the motivation of selecting the inversion technique best fit for a given problem, was made for a general inverse problem. For ill-posedness, a classification of available regularization algorithms namely Tikhonov’s regularization, Bayesian regularization, mollification method, Beck’s sequential approach and Alifanov’s iterative approach, has been provided. Inversion methods like singular value decomposition, truncated singular value decomposition, Tikhonov regularization and total variation regularization are explained. Optimization methods namely steepest descent method, conjugate gradient method, Newton method, Levenberg–Marquardt method, Lagrange method, adjoint method, function specification method, genetic algorithm, differential evolution and particle swarm optimization (PSO) are reviewed. Further, a technique based on neural networks is studied, and wavelet methods like shrinking and wavelet vaguelette decomposition are reviewed. Associated literature has also been listed, highlighting the gaps. The usability of various algorithms in IHTP, starting from the golden section search method, for retrieval of a single parameter, to the regularized versions of the inversion technique, for retrieval of multiple parameters with uncertainty, demonstrates real-life applications to fins in IHTP. An inversion algorithm capable to handle every kind of nonlinearity is sought in literature, whose absence raises the research question, “Is there a technique that works globally for every inverse problem?”, is asked prior to, “What if the available techniques were not utilized to an extent that they should?” is posed. In lieu of this gap, a general comparative framework is developed, such that an efficient technique is selected, based on the total minimum error, which can be used in any field of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好元槐发布了新的文献求助10
刚刚
2秒前
科研通AI6应助贤惠的豌豆采纳,获得10
2秒前
甲羟基戊二酸单酰辅酶A完成签到 ,获得积分10
2秒前
Owen应助典雅问寒采纳,获得10
3秒前
3秒前
4秒前
欣慰的山蝶完成签到,获得积分10
4秒前
香蕉觅云应助WX采纳,获得20
5秒前
神奇的呃完成签到,获得积分10
7秒前
略略略完成签到 ,获得积分10
7秒前
7秒前
8秒前
lina发布了新的文献求助10
8秒前
chenhui发布了新的文献求助10
8秒前
9秒前
weiv发布了新的文献求助20
9秒前
小嘿嘿完成签到,获得积分10
9秒前
Jessie发布了新的文献求助10
11秒前
香蕉觅云应助杨松采纳,获得10
11秒前
杨永乾完成签到,获得积分10
12秒前
12秒前
lvzhechen发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
柔弱的问梅完成签到,获得积分10
13秒前
fan051500完成签到,获得积分10
13秒前
曾经绿兰完成签到,获得积分10
13秒前
14秒前
summer应助小吴小吴采纳,获得10
14秒前
14秒前
15秒前
15秒前
黄科发布了新的文献求助10
15秒前
充电宝应助123采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
ding应助Inscription采纳,获得10
15秒前
lan发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723