Price Delegation with Learning Agents

代表 估价(财务) 收入 微观经济学 授权 收益管理 业务 计算机科学 经济 财务 管理 程序设计语言
作者
Atalay Atasu,Dragos Florin Ciocan,Antoine Désir
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:5
标识
DOI:10.1287/mnsc.2023.4939
摘要

Many firms delegate pricing decisions to sales agents that directly interact with customers. A premise behind this practice is that sales agents can gather informative signals about the customer’s valuation for the good of interest. The information acquired through this interaction with the customer can then be used to make better pricing decisions. We study the underlying principal-agent problem that arises in such situations. In this setting, the agent can exert costly effort to learn a customer’s valuation and then decide on the price to quote to the customer, whereas the firm needs to offer a contract to the agent to induce its desired joint learning and pricing behavior. We analyze two versions of this problem: a base model where there is a single customer and a single good, and a generalization where there are multiple customers and limited inventory of the good. For both problems, we find a family of contracts whose payoffs can approach first-best payoffs arbitrarily closely even if the agent has limited liability, that is, garners nonnegative payments in all states of the world, and shed light on the structure and implementation of such contracts. Under reasonable assumptions, these contracts can be implemented with commissions that are convex increasing in revenues up to some cap. These contracts continue to perform well under practical adjustments such as commissions with a revenue-sharing structure. This paper was accepted by Itai Ashlagi, revenue management and market analytics. Supplemental Material: The e-companion and data are available at https://doi.org/10.1287/mnsc.2023.4939 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大胆的小白菜完成签到,获得积分10
刚刚
不是省油的灯完成签到,获得积分10
1秒前
小管完成签到,获得积分20
1秒前
niu1发布了新的文献求助10
1秒前
夏泽水梦完成签到,获得积分10
3秒前
老实的半山完成签到,获得积分10
3秒前
指纹抒写年轮完成签到,获得积分10
3秒前
愉快的哈密瓜完成签到,获得积分10
3秒前
小小发布了新的文献求助10
3秒前
小二郎应助成就缘分采纳,获得10
3秒前
4秒前
看看文献吧完成签到,获得积分10
4秒前
啵啵发布了新的文献求助10
4秒前
5秒前
初吻还在发布了新的文献求助10
5秒前
哇哦发布了新的文献求助10
6秒前
李唯佳发布了新的文献求助10
6秒前
6秒前
酷波er应助渊思采纳,获得10
6秒前
6秒前
罗mian完成签到,获得积分10
7秒前
7秒前
WUJIAYU完成签到 ,获得积分10
8秒前
小蘑菇应助小汤圆采纳,获得10
9秒前
认真的小熊饼干完成签到,获得积分10
9秒前
Grayball应助蒙开心采纳,获得10
9秒前
9秒前
真开心完成签到,获得积分10
9秒前
Ava应助点点采纳,获得10
9秒前
Seldomyg完成签到 ,获得积分10
10秒前
鲸是海蓝色关注了科研通微信公众号
10秒前
南亭完成签到,获得积分10
10秒前
Orange应助o10采纳,获得10
11秒前
11秒前
11秒前
小王发布了新的文献求助10
12秒前
初吻还在完成签到,获得积分10
13秒前
MADKAI发布了新的文献求助10
13秒前
Asss完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672