Analysis of Reduction Effectiveness and Design of Locally Resonant Metamaterial Barriers for Train Vibration

振动 超材料 有限元法 还原(数学) 隔振 反向 声学 结构工程 联轴节(管道) 计算机科学 材料科学 工程类 物理 机械工程 数学 几何学 光学
作者
Haizhong Zheng,Linchang Miao,Peng Xiao,Kaiyun Lei,Qian Wang
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:24 (18) 被引量:3
标识
DOI:10.1142/s0219455424502043
摘要

Train vibrations are the primary concern in environmental engineering and civil engineering. It is significantly imperative to find new methods for reducing and isolating vibrations. The locally resonant metamaterials (LRMs) propose a novel method and concept for reducing train vibration. However, the accurate and quick design structures of LRMs based on vibration characteristics are still an issue. Thus, this study presents a novel inverse design model of three-component locally resonant metamaterial barriers (LRMBs) for vibration reduction based on deep learning. The bandgap characteristics and vibration modes of the LRMB are investigated by using the improved plane wave expansion (IPWE) and finite element method (FEM). Besides, the gradient-combined LRMBs are proposed based on time–frequency features of measured vibration caused by trains and the novel inverse design model, and a two-dimensional finite element model coupling with infinite element boundaries is established to study the reduction efficiency of the gradient-combined LRMBs. And the performances of different LRMBs are fully analyzed in time and frequency domains. The results show that the novel inverse design model can be successfully used to design the LRMB based on vibration features. Moreover, the gradient-combined LRMBs have better isolation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
看看文献吧完成签到,获得积分10
刚刚
啵啵发布了新的文献求助10
刚刚
1秒前
初吻还在发布了新的文献求助10
1秒前
哇哦发布了新的文献求助10
2秒前
李唯佳发布了新的文献求助10
2秒前
2秒前
酷波er应助渊思采纳,获得10
2秒前
2秒前
罗mian完成签到,获得积分10
3秒前
3秒前
WUJIAYU完成签到 ,获得积分10
4秒前
小蘑菇应助小汤圆采纳,获得10
5秒前
认真的小熊饼干完成签到,获得积分10
5秒前
Grayball应助蒙开心采纳,获得10
5秒前
5秒前
真开心完成签到,获得积分10
5秒前
Ava应助点点采纳,获得10
5秒前
Seldomyg完成签到 ,获得积分10
6秒前
鲸是海蓝色关注了科研通微信公众号
6秒前
南亭完成签到,获得积分10
6秒前
Orange应助o10采纳,获得10
7秒前
7秒前
7秒前
小王发布了新的文献求助10
8秒前
初吻还在完成签到,获得积分10
9秒前
MADKAI发布了新的文献求助10
9秒前
Asss完成签到,获得积分10
9秒前
9秒前
时光友岸完成签到,获得积分10
10秒前
11秒前
昭昭完成签到,获得积分10
11秒前
niu1完成签到,获得积分10
12秒前
铃兰完成签到,获得积分10
12秒前
尘尘完成签到,获得积分10
12秒前
13秒前
yan完成签到,获得积分20
13秒前
13秒前
小鹿斑比完成签到 ,获得积分10
14秒前
洛洛完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672