Research on dynamic characteristics and structural optimization of porous gas bearings in linear compressors

气体压缩机 多孔性 方位(导航) 雷诺方程 多孔介质 材料科学 润滑 天然气 机械 机械工程 雷诺数 复合材料 计算机科学 工程类 物理 湍流 人工智能
作者
Jiangang Li,Jianjun Wu,Jingdao Fan,X. B. Wang,Zihao Gao
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-43818-z
摘要

In order to study the influence of structural parameters of porous gas bearing and operating parameters of linear compressor on the static and dynamic performance of porous gas bearing, based on gas lubrication theory, Darcy's law and Reynolds equation, the mathematical model and simulation model of porous gas bearing of linear compressor are derived and established. The static and dynamic characteristics of the porous gas bearing of the linear compressor are studied by using Fluent software simulation. According to the simulation results, the effects of inlet pressure, porous material thickness and gas gap on the gas consumption and bearing capacity of the porous gas bearing under different eccentricities are analyzed. The results show that the higher the inlet pressure is, the larger the gas consumption and bearing capacity; the thicker the porous material is, the smaller the gas consumption and the larger the bearing capacity, the thicker the gas gap is, the larger the gas consumption and the smaller the bearing capacity. On the basis of simulation research, considering the difficulties of processing and assembly, multi-objective optimization of porous gas bearings is carried out based on response surface methodology. Taking the bearing capacity and gas consumption as the objective functions, the intake pressure is set between 0.3 and 0.5 MPa, the thickness of porous materials is set between 3 and 5 mm, and the thickness of gas gaps is set between 10 and 20 μm. While ensuring the stable operation of the linear compressor, the optimal combination of design parameters is provided for the optimal design of gas bearings used in linear compressors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
1111发布了新的文献求助10
5秒前
科研通AI2S应助学术猪八戒采纳,获得10
6秒前
诺诺完成签到 ,获得积分10
6秒前
Hello应助欣喜机器猫采纳,获得10
9秒前
13秒前
13秒前
23421完成签到,获得积分10
14秒前
Ava应助qinjiayin采纳,获得10
15秒前
成就的笑南完成签到 ,获得积分10
16秒前
17秒前
shinn发布了新的文献求助10
18秒前
huisu发布了新的文献求助10
19秒前
火星上冥茗完成签到,获得积分10
22秒前
yx_cheng应助terryok采纳,获得30
22秒前
叶子的叶完成签到,获得积分10
25秒前
yyauthor发布了新的文献求助20
25秒前
没有银完成签到,获得积分10
26秒前
上官若男应助shinn采纳,获得10
26秒前
忐忑的新蕾完成签到 ,获得积分10
27秒前
bkagyin应助allofme采纳,获得10
27秒前
科研通AI2S应助yuqinghui98采纳,获得10
28秒前
28秒前
1111完成签到,获得积分20
30秒前
老实向雁完成签到,获得积分10
31秒前
31秒前
LIN完成签到,获得积分10
32秒前
yx_cheng应助鲜于枫采纳,获得200
33秒前
白羊完成签到,获得积分10
35秒前
贪玩的醉波完成签到,获得积分10
35秒前
orixero应助goodgay133采纳,获得10
35秒前
臻灏完成签到,获得积分10
36秒前
36秒前
37秒前
39秒前
shinn发布了新的文献求助10
39秒前
深情安青应助二十四桥采纳,获得10
41秒前
人生有味是清欢完成签到,获得积分10
42秒前
qweer发布了新的文献求助10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468