Research on dynamic characteristics and structural optimization of porous gas bearings in linear compressors

气体压缩机 多孔性 方位(导航) 雷诺方程 多孔介质 材料科学 润滑 天然气 机械 机械工程 雷诺数 复合材料 计算机科学 工程类 物理 湍流 人工智能
作者
Jiangang Li,Jianjun Wu,Jingdao Fan,X. B. Wang,Zihao Gao
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-43818-z
摘要

In order to study the influence of structural parameters of porous gas bearing and operating parameters of linear compressor on the static and dynamic performance of porous gas bearing, based on gas lubrication theory, Darcy's law and Reynolds equation, the mathematical model and simulation model of porous gas bearing of linear compressor are derived and established. The static and dynamic characteristics of the porous gas bearing of the linear compressor are studied by using Fluent software simulation. According to the simulation results, the effects of inlet pressure, porous material thickness and gas gap on the gas consumption and bearing capacity of the porous gas bearing under different eccentricities are analyzed. The results show that the higher the inlet pressure is, the larger the gas consumption and bearing capacity; the thicker the porous material is, the smaller the gas consumption and the larger the bearing capacity, the thicker the gas gap is, the larger the gas consumption and the smaller the bearing capacity. On the basis of simulation research, considering the difficulties of processing and assembly, multi-objective optimization of porous gas bearings is carried out based on response surface methodology. Taking the bearing capacity and gas consumption as the objective functions, the intake pressure is set between 0.3 and 0.5 MPa, the thickness of porous materials is set between 3 and 5 mm, and the thickness of gas gaps is set between 10 and 20 μm. While ensuring the stable operation of the linear compressor, the optimal combination of design parameters is provided for the optimal design of gas bearings used in linear compressors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu123发布了新的文献求助10
刚刚
可爱一休发布了新的文献求助10
1秒前
丘比特应助瑾玉采纳,获得10
1秒前
路痴完成签到,获得积分10
1秒前
无奈的傲易完成签到,获得积分10
2秒前
憨憨小黄发布了新的文献求助10
2秒前
薛人英完成签到,获得积分10
3秒前
嗷嗷嗷后完成签到 ,获得积分10
4秒前
Akim应助生工跑路ing采纳,获得10
4秒前
tyzhet发布了新的文献求助10
4秒前
祭酒完成签到 ,获得积分10
5秒前
5秒前
飞跃云栖竹径的幸福地精完成签到,获得积分10
6秒前
7秒前
123完成签到,获得积分20
7秒前
安静的小蚂蚁完成签到,获得积分10
8秒前
LHC完成签到,获得积分10
8秒前
yujiayou完成签到,获得积分10
9秒前
9秒前
77完成签到,获得积分10
9秒前
入暖发布了新的文献求助10
9秒前
无语的梦易完成签到,获得积分10
9秒前
Ava应助vexille采纳,获得10
9秒前
planA完成签到,获得积分10
9秒前
无限宛凝完成签到,获得积分10
9秒前
️语完成签到,获得积分10
10秒前
你不刷牙完成签到,获得积分10
10秒前
10秒前
搜集达人应助Chaga采纳,获得10
11秒前
11秒前
11秒前
ssds发布了新的文献求助10
11秒前
李爱国应助疯狂的依霜采纳,获得10
11秒前
11秒前
HEIKU应助帅气的鑫磊采纳,获得10
12秒前
12秒前
13秒前
wongcheng完成签到,获得积分10
13秒前
郑波涛发布了新的文献求助10
14秒前
14秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158979
求助须知:如何正确求助?哪些是违规求助? 2810153
关于积分的说明 7886308
捐赠科研通 2468968
什么是DOI,文献DOI怎么找? 1314533
科研通“疑难数据库(出版商)”最低求助积分说明 630640
版权声明 602012