单线态氧
化学
光化学
氧气
吸附
分子
光催化
人体净化
石墨烯
纳米技术
材料科学
物理化学
废物管理
有机化学
催化作用
工程类
作者
Jingjing Jiang,Shengda Liu,Donglong Shi,Tongze Sun,Yakun Wang,Shaozhu Fu,Yansong Liu,Mingyu Li,Dandan Zhou,Shuangshi Dong
出处
期刊:Water Research
[Elsevier]
日期:2023-08-18
卷期号:244: 120502-120502
被引量:33
标识
DOI:10.1016/j.watres.2023.120502
摘要
The development of 1O2-dominanted selective decontamination for water purification was hampered by extra H2O2 consumption and poor 1O2 generation. Herein, we proposed the reconstruction of Fe spin state using near-range N atom and long-range N vacancies to enable efficient generation of H2O2 and sequential activation of H2O2 into 1O2 after visible-light irradiation. Theoretical and experimental results revealed that medium-spin Fe(III) strengthened O2 adsorption, penetrated eg electrons to antibonding p-orbital of oxygen, and lowered the free energy of O2 activation, enabling the oxygen protonation for H2O2 generation. Thereafter, the electrons of H2O2 could be extracted by low-spin Fe(III) and rapidly converted into 1O2 in a nonradical path. The developed 1O2-dominated in-situ photo-Fenton-like system had an excellent pH universality and anti-interference to inorganic ions, dissolved organic matter, and even real water matrixes (e.g., tap water and secondary effluent). This work provided a novel insight for sustainable and efficient 1O2 generation, which motivated the development of new-generation selective water treatment technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI