亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications

稳健性(进化) 计算机科学 电压 可靠性工程 数据挖掘 工程类 电气工程 生物化学 化学 基因
作者
Qiao Wang,Min Ye,Xue Cai,Dirk Uwe Sauer,Weihan Li
出处
期刊:Applied Energy [Elsevier BV]
卷期号:350: 121747-121747 被引量:29
标识
DOI:10.1016/j.apenergy.2023.121747
摘要

Capacity estimation plays a vital role in ensuring the health and safety management of lithium-ion battery-based electric-drive systems. This research focuses on developing a transferable data-driven framework for accurately estimating the capacity of lithium-ion batteries with the same chemistry but different capacities in field applications. The proposed approach leverages universal information from a laboratory dataset and utilizes a pre-trained network designed for small-capacity batteries with constant-current discharging profiles. By applying this framework, capacity estimation for large-capacity batteries under drive cycles can be efficiently achieved with improved performance. In addition, the incremental capacity analysis is employed on two datasets, selecting a robust voltage interval for health indicator extraction with physical interpretations and uncertainty awareness of different fast charging protocols. The feature extraction and dimension increase processes are automated, utilizing the last short charging sequences in wide voltage intervals while considering the uncertainty related to various user charging habits. Results demonstrate that the proposed strategy significantly enhances both robustness and accuracy. When compared to conventional methods, the proposed method exhibits an average root mean square error improvement of 68.40% and 65.89% in the best and worst cases, respectively. The robustness of the proposed strategy is further verified through 30 randomized health indicator verifications. This research showcases the potential of transferable deep learning in improving capacity estimation by leveraging universal information for field applications. The findings emphasize the importance of sharing knowledge across different capacities of lithium-ion batteries, enabling more effective and accurate capacity estimation techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
21秒前
37秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
共享精神应助科研小菜鸡采纳,获得10
2分钟前
2分钟前
彼岸花开发布了新的文献求助200
2分钟前
huahuao发布了新的文献求助10
2分钟前
AMENG完成签到,获得积分10
2分钟前
huahuao完成签到,获得积分10
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
2分钟前
2分钟前
SCI完成签到,获得积分10
2分钟前
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
大个应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
北方完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
张土豆完成签到 ,获得积分10
4分钟前
科研小菜鸡完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
蝈蝈完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
6分钟前
禹山河发布了新的文献求助10
6分钟前
李健的小迷弟应助禹山河采纳,获得10
6分钟前
lmplzzp完成签到,获得积分10
6分钟前
6分钟前
nicolaslcq完成签到,获得积分0
6分钟前
LU发布了新的文献求助30
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960091
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128619
捐赠科研通 3238289
什么是DOI,文献DOI怎么找? 1789671
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069