亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining unsupervised deep learning and Monte Carlo dropout for seismic data reconstruction and its uncertainty quantification

蒙特卡罗方法 计算机科学 辍学(神经网络) 不确定度量化 马尔科夫蒙特卡洛 水准点(测量) 深度学习 算法 推论 卷积神经网络 人工智能 贝叶斯推理 贝叶斯概率 机器学习 数学 统计 地质学 大地测量学
作者
Gui Chen,Yang Liu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA53-WA65 被引量:13
标识
DOI:10.1190/geo2022-0632.1
摘要

Many methods, such as multichannel singular spectrum analysis (MSSA) and deep seismic prior (DSP), have been developed for seismic data reconstruction, but they do not quantify the uncertainty of reconstructed traces, relying on the subjective visual inspection of results. Our goal is to quantify the reconstructed uncertainty while recovering missing traces. We develop a framework including an unsupervised deep-learning-based seismic data reconstruction method and the existing Monte Carlo dropout method to achieve this goal. The only information required by our framework is the original incomplete data. A convolutional neural network trained on the original nonmissing traces can simultaneously denoise and reconstruct seismic data. For uncertainty quantification, the Monte Carlo dropout method treats the well-known dropout technique as Bayesian variational inference. This refers to the fact that the dropout technique can be regarded as an approximation to the probabilistic Gaussian process and thus can be used to obtain an approximate distribution (Bernoulli variational distribution) of the posterior distribution. The reconstructed result and uncertainty of the trained model are yielded through multiple Monte Carlo dropout simulations. The analysis of the reconstructed uncertainty quantifies the confidence to use reconstructed traces. Tests on synthetic and field data illustrate that our framework outperforms the MSSA and DSP methods on reconstructed accuracy and quantifies the reconstructed uncertainty as an objective benchmark to guide decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明芬发布了新的文献求助10
25秒前
ceeray23应助科研通管家采纳,获得10
35秒前
酷酷的紫南完成签到 ,获得积分10
44秒前
49秒前
CapQing完成签到,获得积分10
50秒前
2分钟前
明芬发布了新的文献求助10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
小不点发布了新的文献求助30
2分钟前
3分钟前
小不点完成签到,获得积分20
3分钟前
木木完成签到 ,获得积分10
3分钟前
3分钟前
DduYy完成签到,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
冉亦完成签到,获得积分10
4分钟前
5分钟前
犬来八荒发布了新的文献求助20
5分钟前
HYQ完成签到 ,获得积分10
5分钟前
TYM发布了新的文献求助10
5分钟前
科研通AI6应助TYM采纳,获得30
5分钟前
gengen应助犬来八荒采纳,获得10
5分钟前
5分钟前
5分钟前
犬来八荒完成签到,获得积分10
5分钟前
yyy发布了新的文献求助10
5分钟前
5分钟前
小二郎应助yyy采纳,获得10
6分钟前
Only完成签到 ,获得积分10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
betterme完成签到,获得积分10
6分钟前
6分钟前
CRUSADER完成签到,获得积分10
7分钟前
小不点应助明芬采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599818
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671430
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470945