Combining unsupervised deep learning and Monte Carlo dropout for seismic data reconstruction and its uncertainty quantification

蒙特卡罗方法 计算机科学 辍学(神经网络) 不确定度量化 马尔科夫蒙特卡洛 水准点(测量) 深度学习 算法 推论 卷积神经网络 人工智能 贝叶斯推理 贝叶斯概率 机器学习 数学 统计 地质学 大地测量学
作者
Gui Chen,Yang Liu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA53-WA65 被引量:4
标识
DOI:10.1190/geo2022-0632.1
摘要

Many methods, such as multichannel singular spectrum analysis (MSSA) and deep seismic prior (DSP), have been developed for seismic data reconstruction, but they do not quantify the uncertainty of reconstructed traces, relying on the subjective visual inspection of results. Our goal is to quantify the reconstructed uncertainty while recovering missing traces. We develop a framework including an unsupervised deep-learning-based seismic data reconstruction method and the existing Monte Carlo dropout method to achieve this goal. The only information required by our framework is the original incomplete data. A convolutional neural network trained on the original nonmissing traces can simultaneously denoise and reconstruct seismic data. For uncertainty quantification, the Monte Carlo dropout method treats the well-known dropout technique as Bayesian variational inference. This refers to the fact that the dropout technique can be regarded as an approximation to the probabilistic Gaussian process and thus can be used to obtain an approximate distribution (Bernoulli variational distribution) of the posterior distribution. The reconstructed result and uncertainty of the trained model are yielded through multiple Monte Carlo dropout simulations. The analysis of the reconstructed uncertainty quantifies the confidence to use reconstructed traces. Tests on synthetic and field data illustrate that our framework outperforms the MSSA and DSP methods on reconstructed accuracy and quantifies the reconstructed uncertainty as an objective benchmark to guide decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助怡然乌采纳,获得10
2秒前
LH完成签到,获得积分10
2秒前
淡然冬灵应助尤玉采纳,获得20
2秒前
adaadlj;a完成签到,获得积分10
3秒前
cowboy123完成签到,获得积分10
3秒前
4秒前
CipherSage应助从不内卷采纳,获得10
5秒前
6秒前
LH发布了新的文献求助20
7秒前
7秒前
陈洋完成签到 ,获得积分10
8秒前
allzzwell完成签到 ,获得积分10
8秒前
9秒前
11完成签到,获得积分10
9秒前
czh应助zumrat采纳,获得10
9秒前
10秒前
11秒前
酷波er应助玖Nine采纳,获得10
11秒前
oneonlycrown完成签到,获得积分10
11秒前
DijiaXu应助123采纳,获得10
12秒前
555557应助123采纳,获得10
12秒前
meng完成签到,获得积分10
12秒前
13秒前
程南发布了新的文献求助10
13秒前
14秒前
朱建军应助puppy采纳,获得10
15秒前
1111应助puppy采纳,获得10
15秒前
闹闹发布了新的文献求助10
16秒前
朴素的问枫完成签到,获得积分10
16秒前
16秒前
SciGPT应助hjjjjj1采纳,获得10
17秒前
高晨旭完成签到 ,获得积分10
17秒前
19秒前
19秒前
zxb关闭了zxb文献求助
20秒前
20秒前
20秒前
20秒前
20秒前
nature预备军完成签到,获得积分10
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144