比较静力学
区间(图论)
正多边形
秩(图论)
数理经济学
空格(标点符号)
集合(抽象数据类型)
凸组合
凸分析
消费(社会学)
数学优化
数学
计算机科学
经济
计量经济学
凸优化
微观经济学
组合数学
程序设计语言
操作系统
社会科学
社会学
几何学
作者
Navin Kartik,Sang Mok Lee,Daniel Rappoport
标识
DOI:10.1093/restud/rdad103
摘要
Abstract An agent’s preferences depend on an ordered parameter or type. We characterize the set of utility functions with single-crossing differences (SCD) in convex environments. These include preferences over lotteries, both in expected utility and rank-dependent utility frameworks, and preferences over bundles of goods and over consumption streams. Our notion of SCD does not presume an order on the choice space. This unordered SCD is necessary and sufficient for “interval choice” comparative statics. We present applications to cheap talk, observational learning, and collective choice, showing how convex environments arise in these problems and how SCD/interval choice are useful. Methodologically, our main characterization stems from a result on linear aggregations of single-crossing functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI