Intelligent flow field reconstruction based on proper orthogonal decomposition dimensionality reduction and improved multi-branch convolution fusion

燃烧室 算法 超音速 降维 领域(数学) 卷积神经网络 计算机科学 物理 人工智能 燃烧 数学 机械 有机化学 化学 纯数学
作者
Maotao Yang,Gang Wang,Mingming Guo,Ye Tian,Zhiwen Zhong,Mengmeng Xu,Linjing Li,Jialing Le,Hua Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (11) 被引量:3
标识
DOI:10.1063/5.0174660
摘要

The rapid and accurate reconstruction of the supersonic combustor flow field is of great significance for sensing and predicting the combustion state. Existing deep learning methods pay less attention to the convergence speed of flow field reconstruction, which results in longer training and prediction times for the models. This study proposes a method for reconstructing the flow field in supersonic combustor by combining a reduced-order model based on proper orthogonal decomposition (POD) with a multi-branch convolutional neural network. This method first analyzes the effectiveness of POD reconstruction. Then, based on the wall pressure data of the supersonic engine combustor, it performs flow field image reconstruction. Finally, through error calculation and gradient updating with low-resolution principal component flow field shadow images obtained from the POD algorithm, the high-precision and efficient prediction of flow field images is achieved. Different equivalence ratio hydrogen fuel combustion experiments were conducted in a pulsed combustion wind tunnel with an incoming flow Mach number of 2.5. The learning model was trained and tested using the dataset obtained from these experiments. Numerous experiments demonstrated that the model can effectively reconstruct the wave structures of complex flow fields. Multiple evaluation indicators indicated that the reconstructed flow field of the combustor shows good agreement with that obtained from ground wind tunnel testing. Furthermore, after introducing the POD dimensionality reduction model, the training time was reduced by 32.03%, effectively improving the training time complexity of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理萤完成签到,获得积分10
刚刚
1秒前
liuzhanyu完成签到,获得积分10
1秒前
2秒前
2秒前
carly完成签到 ,获得积分10
3秒前
人机灵完成签到 ,获得积分10
3秒前
3秒前
科研小李发布了新的文献求助10
5秒前
guoguo82发布了新的文献求助10
5秒前
XU发布了新的文献求助10
5秒前
6秒前
NeXt_best完成签到,获得积分10
6秒前
8秒前
Zz完成签到 ,获得积分10
9秒前
橡皮泥发布了新的文献求助30
10秒前
guoguo82完成签到,获得积分10
10秒前
ymX发布了新的文献求助50
10秒前
Neko完成签到,获得积分10
11秒前
liu完成签到,获得积分10
11秒前
拼搏小丸子完成签到 ,获得积分10
12秒前
12秒前
orixero应助谦让的指甲油采纳,获得10
13秒前
Arvilzzz完成签到,获得积分10
15秒前
害羞的裘完成签到 ,获得积分10
15秒前
冷酷的小懒猪完成签到 ,获得积分10
16秒前
17秒前
Hello应助青青草原图图采纳,获得10
17秒前
漂亮的飞莲完成签到,获得积分10
18秒前
科研通AI5应助邱邱采纳,获得30
18秒前
宋枝野完成签到 ,获得积分10
18秒前
19秒前
20秒前
dyc238100完成签到,获得积分10
20秒前
hipig发布了新的文献求助10
22秒前
22秒前
22秒前
风趣的烤鸡完成签到,获得积分20
23秒前
赘婿应助耍酷的白桃采纳,获得10
23秒前
仲夏夜之梦完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572102
求助须知:如何正确求助?哪些是违规求助? 3142380
关于积分的说明 9447398
捐赠科研通 2843806
什么是DOI,文献DOI怎么找? 1563098
邀请新用户注册赠送积分活动 731575
科研通“疑难数据库(出版商)”最低求助积分说明 718603