Prediction Variability to Identify Reduced AI Performance in Cancer Diagnosis at MRI and CT

医学 接收机工作特性 百分位 公制(单位) 恶性肿瘤 癌症 放射科 人工智能 核医学 统计 病理 内科学 计算机科学 数学 运营管理 经济
作者
Natália Alves,Joeran S. Bosma,Kiran Vaidhya Venkadesh,Colin Jacobs,Zaigham Saghir,Maarten de Rooij,John J. Hermans,Henkjan Huisman
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (3) 被引量:8
标识
DOI:10.1148/radiol.230275
摘要

Background A priori identification of patients at risk of artificial intelligence (AI) failure in diagnosing cancer would contribute to the safer clinical integration of diagnostic algorithms. Purpose To evaluate AI prediction variability as an uncertainty quantification (UQ) metric for identifying cases at risk of AI failure in diagnosing cancer at MRI and CT across different cancer types, data sets, and algorithms. Materials and Methods Multicenter data sets and publicly available AI algorithms from three previous studies that evaluated detection of pancreatic cancer on contrast-enhanced CT images, detection of prostate cancer on MRI scans, and prediction of pulmonary nodule malignancy on low-dose CT images were analyzed retrospectively. Each task’s algorithm was extended to generate an uncertainty score based on ensemble prediction variability. AI accuracy percentage and partial area under the receiver operating characteristic curve (pAUC) were compared between certain and uncertain patient groups in a range of percentile thresholds (10%–90%) for the uncertainty score using permutation tests for statistical significance. The pulmonary nodule malignancy prediction algorithm was compared with 11 clinical readers for the certain group (CG) and uncertain group (UG). Results In total, 18 022 images were used for training and 838 images were used for testing. AI diagnostic accuracy was higher for the cases in the CG across all tasks (P < .001). At an 80% threshold of certain predictions, accuracy in the CG was 21%–29% higher than in the UG and 4%–6% higher than in the overall test data sets. The lesion-level pAUC in the CG was 0.25–0.39 higher than in the UG and 0.05–0.08 higher than in the overall test data sets (P < .001). For pulmonary nodule malignancy prediction, accuracy of AI was on par with clinicians for cases in the CG (AI results vs clinician results, 80% [95% CI: 76, 85] vs 78% [95% CI: 70, 87]; P = .07) but worse for cases in the UG (AI results vs clinician results, 50% [95% CI: 37, 64] vs 68% [95% CI: 60, 76]; P < .001). Conclusion An AI-prediction UQ metric consistently identified reduced performance of AI in cancer diagnosis. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Babyn in this issue. An earlier incorrect version appeared online. This article was corrected on September 20, 2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
jsxxdr发布了新的文献求助10
2秒前
2秒前
听雨眠发布了新的文献求助10
3秒前
无语完成签到,获得积分10
4秒前
111发布了新的文献求助10
4秒前
MGQQbg完成签到 ,获得积分10
4秒前
啦啦啦发布了新的文献求助20
5秒前
6秒前
tqs发布了新的文献求助30
7秒前
研友_LmeK4L发布了新的文献求助10
7秒前
8秒前
吴军霄完成签到,获得积分10
9秒前
wind完成签到,获得积分10
10秒前
Niar完成签到 ,获得积分10
12秒前
怡然问晴应助Shayulajiao采纳,获得10
12秒前
Sinner完成签到,获得积分10
14秒前
秃头小宝贝完成签到,获得积分0
16秒前
大个应助卷卷516采纳,获得10
16秒前
16秒前
22D发布了新的文献求助10
18秒前
zhang完成签到,获得积分20
18秒前
Sinner发布了新的文献求助30
18秒前
19秒前
21秒前
吼隆隆隆发布了新的文献求助10
21秒前
柠小檬c发布了新的文献求助10
21秒前
研友_VZG7GZ应助zhang采纳,获得10
24秒前
映菡发布了新的文献求助10
26秒前
zero桥完成签到,获得积分10
29秒前
兰博基尼奥完成签到,获得积分10
32秒前
zhou默完成签到,获得积分10
33秒前
白华苍松发布了新的文献求助10
34秒前
我是老大应助kamola0807采纳,获得10
34秒前
36秒前
36秒前
38秒前
如意的惮完成签到,获得积分10
39秒前
Ava应助多情小熊猫采纳,获得10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458734
求助须知:如何正确求助?哪些是违规求助? 3053505
关于积分的说明 9036831
捐赠科研通 2742695
什么是DOI,文献DOI怎么找? 1504509
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519