检出限
材料科学
纳米技术
基质(水族馆)
生物传感器
纳米结构
分子
化学气相沉积
光电子学
化学
色谱法
有机化学
海洋学
地质学
作者
Ankita Singh,Ashish Kumar Mishra
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:15 (40): 16480-16492
被引量:4
摘要
Surface-enhanced Raman scattering (SERS) has attracted extensive attention for its rapid, ultra-sensitive, non-destructive and label-free fingerprint detection of trace molecules. Recently, two-dimensional transition metal dichalcogenides have been investigated as SERS substrates owing to their low cost, simple synthesis, excellent optical behavior, tunable bandgap, high carrier mobility and good biocompatibility. Here, we have synthesized 2H-MoS2 nanostructures of different morphologies (vertically and horizontally oriented) via the chemical vapor deposition (CVD) method on different substrates (FTO-coated glass, Si and SiO2-Si) and utilized them as SERS substrates for the detection of bilirubin and vitamin B12 biomolecules. The strong vibronic coupling within the charge transfer (CT) process leads to photo-induced charge transfer (PICT) resonance, showing enhanced SERS activity. This CT mechanism is further confirmed by observing quenching of the room temperature PL spectra and enhanced SERS signals of biomolecules over SERS substrates. To the best of our knowledge, the detection limit in this work (10-11 M for bilirubin and 10-8 M for vitamin B12) is considerably higher than previously reported values. The improved efficiency of the PICT process can be achieved at low temperature, and this is confirmed when performing low temperature-dependent photoluminescence (PL) studies on SERS substrates. Furthermore, we also demonstrated enhanced SERS activity at low temperature on CVD-grown pristine MoS2 films over different substrates for biomolecule detection for the first time, attributing this activity to the enhanced PICT process at low temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI