列线图
医学
无线电技术
放射科
曲线下面积
接收机工作特性
无症状的
核医学
内科学
作者
Menghan Liu,Ning Chang,Shun Zhang,Y. W. Du,Shouxin Zhang,Weidong Ren,Jian Sun,Jin Bai,Sheng Wang,G. Zhang
标识
DOI:10.1016/j.crad.2023.07.018
摘要
To develop and validate a radiomics nomogram for identifying high-risk carotid plaques on computed tomography (CT) angiography (CTA).A total of 280 patients with symptomatic (n=131) and asymptomatic (n=139) carotid plaques were divided into a training set (n=135), validation set (n=58), and external test set (n=87). Radiomic features were extracted from CTA images. A radiomics model was constructed based on selected features and a radiomics score (rad-score) was calculated. A clinical factor model was constructed by demographics and CT findings. A radiomics nomogram combining independent clinical factors and the rad-score was constructed. The diagnostic performance of three models was evaluated and validated by region of characteristic curves.Calcification and maximum plaque thickness were the independent clinical factors. Twenty-four features were used to build the radiomics signature. In the validation set, the nomogram (area under the curve [AUC], 0.977; 95% CI, 0.899-0.999) performed better (p=0.017 and p=0.031) than the clinical factor model (AUC, 0.862; 95% CI, 0.746-0.938) and radiomics signature (AUC, 0.944; 95% CI, 0.850-0.987). In external test set, the nomogram (AUC, 0.952; 95% CI, 0.884-0.987) and radiomics signature (AUC, 0.932; 95% CI, 0.857-0.975) showed better discrimination capability (p=0.002 and p=0.037) than clinical factor model (AUC, 0.818; 95% CI, 0.721-0.892).The CT-based nomogram showed satisfactory performance in identification of high-risk plaques in carotid arteries, and it may serve as a potential non-invasive tool to identify carotid plaque vulnerability and risk stratification.
科研通智能强力驱动
Strongly Powered by AbleSci AI