An Electron/Ion Dual Conductive Integrated Cathode Using Cationic/Anionic Redox for High‐Energy‐Density All‐Solid‐State Lithium‐Sulfur Batteries

阴极 电解质 离子键合 锂(药物) 材料科学 阳极 离子 化学 分析化学(期刊) 物理化学 电极 有机化学 医学 内分泌学 色谱法
作者
Wenli Pan,Kentaro Yamamoto,Toshiyuki Matsunaga,Toshiki Watanabe,Mukesh Kumar,Neha Thakur,Tomoki Uchiyama,Masayuki Uesugi,Akihisa Takeuchi,Atsushi Sakuda,Akitoshi Hayashi,Masahiro Tatsumisago,Yoshiharu Uchimoto
出处
期刊:Batteries & supercaps [Wiley]
卷期号:7 (1) 被引量:13
标识
DOI:10.1002/batt.202300427
摘要

Abstract All‐solid‐state lithium‐sulfur batteries (ASSLSB), composed of sulfur cathode and lithium metal anode with high theoretical capacity, have a potentially higher energy density by weight than a typical lithium‐ion battery (LIB). However, due to insulating sulfur, a relatively large proportion of electronic (carbon) and ionic (solid electrolyte) conductors are mixed for cathode fabrication, leading to inferior practical capacity. Herein, we report a novel integrated cathode Li 2 S‐LiI‐MoS 2 which has relatively high electronic and ionic conductivities (the order of 10 −4 S cm −1 ) without any carbon and solid electrolyte. The ASSLSB with integrated Li 2 S‐LiI‐MoS 2 cathode delivers a remarkably high energy density of 1020 Wh kg −1 at the cathode level at room temperature. By applying precise X‐ray diffraction, pair distribution function analysis and X‐ray computed tomography, it is found that the formation of an ionic conducting phase composed mainly of LiI during discharge is responsible for the high rate capability. Furthermore, X‐ray absorption fine structure (XAFS) has also revealed the charge compensation mechanism and ascertained the involvement of both Mo 3d and S 3p orbitals during the charging and discharging process. It is believed the strategy will pave the way for developing high practical energy density at room temperature for all‐solid‐state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
iaskwho发布了新的文献求助10
刚刚
111完成签到,获得积分10
1秒前
1秒前
DarrenVan完成签到,获得积分10
4秒前
英俊的铭应助lk采纳,获得10
4秒前
lucky完成签到 ,获得积分10
4秒前
王国科发布了新的文献求助10
5秒前
高高的天亦完成签到 ,获得积分10
5秒前
小D发布了新的文献求助10
6秒前
村上春树的摩的完成签到 ,获得积分10
6秒前
Fox完成签到,获得积分20
7秒前
8秒前
一一完成签到 ,获得积分10
8秒前
9秒前
ccm应助科研通管家采纳,获得10
10秒前
Bio应助科研通管家采纳,获得150
10秒前
无花果应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
11秒前
ccm应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
若ruofeng应助科研通管家采纳,获得20
11秒前
dew应助科研通管家采纳,获得10
11秒前
11秒前
若ruofeng应助科研通管家采纳,获得20
11秒前
馆长应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
若ruofeng应助科研通管家采纳,获得20
11秒前
若ruofeng应助科研通管家采纳,获得20
11秒前
若ruofeng应助科研通管家采纳,获得20
11秒前
11秒前
若ruofeng应助科研通管家采纳,获得20
11秒前
若ruofeng应助科研通管家采纳,获得20
11秒前
若ruofeng应助科研通管家采纳,获得20
11秒前
今后应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514