Dynamic attention augmented graph network for video accident anticipation

计算机科学 预测(人工智能) 背景(考古学) 图形 人工智能 编码(集合论) 机器学习 理论计算机科学 生物 古生物学 集合(抽象数据类型) 程序设计语言
作者
Wenfeng Song,Shuai Li,Tao Chang,Ke Xie,Aimin Hao,Hong Qin
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:147: 110071-110071 被引量:7
标识
DOI:10.1016/j.patcog.2023.110071
摘要

Accident anticipation (or the prediction of abnormal events in general) aims to forecast accidents before they occur by assessing risks based on the preceding frames in videos. The risk assessment heavily relies on understanding the semantics of the scene context and predicting the interactions among the involved subjects. Indeed, the comprehensive utilization of spatial relationships among the subjects of immediate interest in a single frame and temporal dependencies across consecutive frames is crucial for video accident anticipation. To address this challenge, we propose a novel approach called Dynamic Attention Augmented Graph Network (DAA-GNN), which leverages underlying spatial cues and models relationships among detected subjects of immediate interest. Specifically, our approach employs a graph neural network that is enhanced by global context clues, allowing for effective message propagation and the discovery of interactions among the subjects of interest in the scene. The DAA-GNN includes a temporal attention module designed to identify long-term dependencies along the temporal axis, contributing to an end-to-end deep network solution for accurate accident anticipation. We extensively evaluate our method on the publicly-available Dashcam Accident Dataset (DAD) and Epic Fail (EF) datasets, conducting comprehensive experiments to assess its performance. The results unequivocally demonstrate that our method outperforms the state-of-the-art accident anticipation methods. Our code and datasets will be made publicly available to facilitate future research and reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助凯当以慷采纳,获得10
1秒前
2秒前
温迪发布了新的文献求助30
3秒前
xcwy发布了新的文献求助30
3秒前
xichang完成签到,获得积分10
4秒前
5秒前
脑洞疼应助朱安南采纳,获得10
5秒前
何兽医发布了新的文献求助10
5秒前
5秒前
铜豌豆完成签到,获得积分10
5秒前
时光完成签到,获得积分10
6秒前
刚刚发布了新的文献求助10
7秒前
7秒前
努力努力再努力CMY完成签到,获得积分10
8秒前
我来也完成签到 ,获得积分10
8秒前
大个应助炙心采纳,获得10
10秒前
xichang发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
食分子发布了新的文献求助10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
于骁完成签到,获得积分10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得30
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
8R60d8应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
wkjfh应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427